• Asignatura: Matemáticas
  • Autor: AbigailBernal
  • hace 9 años

Un numero entero consta de tres dígitos,el dígito de las centenas es igual a la suma de las otras, y el quíntuplo, de las unidades equivale a la suma de las decenas y de las centenas. Hallense este numero, sabiendo que si se invierten, los dígitos resulta disminuido en 594.


Granpez: son todos los datos?
AbigailBernal: Sii, ayudame

Respuestas

Respuesta dada por: Granpez
23
Segun los datos el numeral sera de esta forma
(b+c)bc
ahora segun otro dato
5c=b+(b+c)
4c=2b
2c=b.....(esta equivalencia nos servira para dar forma al numeral)
que sera asi:
(3c)(2c)(c)
Luego
(c)(2c)(3c)=(3c)(2c)(c) -594
200c-2c=594
198c=594
c=3
Ahora reemplazando el numero sera:
(3c)(2c)(c)= 963 (Respuesta)
Es un problema sencillo, un gusto ayudarte
Respuesta dada por: mafernanda1008
1

El número que deseamos encontrar es igual a 963

Sean "a", "b" y "c" los dígitos de las centenas, decenas y unidades respectivamente, entonces tenemos que:

1. a = b + c

2. 5c = b + a

Luego tenemos que si se invierten los dígitos el resultado se disminuye en 594: entonces el número original es 100a + 10b + c, si invertimos las cifras será 100c + 10b + a, por lo tanto:

100a + 10b + c - (100c + 10b + a) = 594

99a - 99c = 594

99*(a - c) = 594

a - c = 594/99

3. a - c = 6

Tenemos el sistema:

1. a = b + c

2. 5c = b + a

3. a - c = 6

Despejamos la tercera ecuación:

4. a = 6 + c

Sustituimos en las ecuaciones 1 y 2:

6 + c = b + c

5. b = 6

5c = b + 6 + c

b + 6 = 5c - c = 4c

b + 6 = 4c

Sustituimos la ecuación 5:

6 + 6 = 4c

4c = 12

c = 12/4

c = 3

Sustituimos en la ecuación 1:

a = 6 + 3 = 9

El número es 963

Puedes visitar: https://brainly.lat/tarea/6495060

Adjuntos:
Preguntas similares