¿Como hago este problema? :
Un cometa es visible desde la tierra cada 24 años y otro cada 36 años. El último año que fueron visibles conjuntamente fue en 1944. ¿En que año volverán a coincidir?
Respuestas
Respuesta dada por:
5
Determina el mcm de 24 y 36:
24 - 36 | 2
12 - 18 | 2
6 - 9 | 2
3 - 9 | 3
1 - 3 | 3
1 - 1
mcm=2×2×2×3×3=72
Coinciden cada 72 años. Sumamos 1944+72=2016
Volverán a coincidir en el 2016.
24 - 36 | 2
12 - 18 | 2
6 - 9 | 2
3 - 9 | 3
1 - 3 | 3
1 - 1
mcm=2×2×2×3×3=72
Coinciden cada 72 años. Sumamos 1944+72=2016
Volverán a coincidir en el 2016.
Respuesta dada por:
5
Como es visible en dos periodos, 24 y 36
Lo que tienes que hacer es sacar el mínimo común múltiplo de esos dos números.
Luego el resultado que obtengas de ambos números lo tienes que sumar con el año 1944.
Resolvemos :
Descomponemos los números en sus factores primos.
24 l 36 l 2
12 l 18 l 2
6 l 9 l 2
3 l 9 l 3
1 l 3 l 3
1 l 1
Multiplicamos los números obtenidos de la descomposición.
(24;36) = 2³ * 3²
(24;36) = 8 * 9
(24;36) = 72
Sumamos con el año que ya tenemos :
Entonces
1944 + 72 = 2016
Solución : Volverán a coincidir en el año 2016
Lo que tienes que hacer es sacar el mínimo común múltiplo de esos dos números.
Luego el resultado que obtengas de ambos números lo tienes que sumar con el año 1944.
Resolvemos :
Descomponemos los números en sus factores primos.
24 l 36 l 2
12 l 18 l 2
6 l 9 l 2
3 l 9 l 3
1 l 3 l 3
1 l 1
Multiplicamos los números obtenidos de la descomposición.
(24;36) = 2³ * 3²
(24;36) = 8 * 9
(24;36) = 72
Sumamos con el año que ya tenemos :
Entonces
1944 + 72 = 2016
Solución : Volverán a coincidir en el año 2016
Preguntas similares
hace 9 años
hace 9 años
hace 9 años