Problema
5. En una caja con forma de prisma de base cuadrada, como la de la imagen,
se empaca un vaso con forma de cilindro. Si el vaso cabe exactamente en la
caja, ¿cuánto mide el diámetro de la base del vaso?
Lo ocupo rápido
Respuestas
Respuesta:
Una caja con forma de prisma recto tiene un volumen representado por una ecuación. Considerando el área de la base.
A) El dibujo que representa la situación se puede ver en la imagen.
B) La Expresión algebraica que representa la altura de la caja es:
altura = y - 1
Explicación:
Datos;
Volumen: y³-y²+4y-4
Área base: y²+4
El volumen de un prisma es la multiplicación sus longitudes (largo, ancho y altura).
V = a·b·h = A_b·h
Siendo;
a: largo
b: ancho
h: altura
El área de base forma un rectángulo, la cual es el producto de la largo por el ancho.
A_b = a·b
y²+4 = a·b
Sustituir A_b en V;
y³-y²+4y-4 = (y²+4)·h
Despejar h;
h = (y³-y²+4y-4)/(y²+4)
Aplicar división de polinomios;
Dividir los factores de mayor grado del numerador y del denominador;
y³/y² = y
Multiplicar y por y²+4;
y³+4y
Restar y³+4y a y³-y²+4y-4;
-y²-4
= y + (-y²-4)/(y²+4)
Dividir los factores de mayor grado del numerador y del denominador;
-y²/y² = -1
Multiplicar -1 por y²+4;
-y²-4
Restar -y²-4 a -y²-4;
0
= y-1
h = y - 1