un polígono tiene 44 diagonales determinar el numero de lados del polígono

Respuestas

Respuesta dada por: mariaclzapata
139
Es el endecágono. Un endecágono tiene 44 diagonales, resultado que se puede obtener aplicando la ecuación general para deteminar el número de diagonales de un polígono, D = n(n − 3) / 2; siendo el número de lados n = 11, tenemos: 

mariaclzapata: espero q te sirva
luceroxdlg: gracias
mariaclzapata: de nada
Respuesta dada por: Hekady
85

El número de lados del polígono es: 11 lados (Endecágono)

         

⭐Explicación paso a paso:

La relación de diagonales de un polígono tiene por relación la siguiente expresión:

 

\boxed {D=\frac{n*(n-3)}{2}}

 

Donde:

  • D: representa el número de diagonales  → 44 diagonales
  • n: representa el número de lados del polígono

   

Entonces sustituyendo para D = 44 , determinamos el número de lados del polígono:

44= n * (n - 3)/2  

44 * 2 = n² - 3n

88 = n² - 3n

 

Ecuación de 2do grado:

n² - 3n - 88 = 0

Con: a = 1 / b = -3 / c = -88

 

Hallamos una raíz solución:

\boxed{n=\frac{-(-3)+\sqrt{{-3}^{2}-4*1*-88}}{2*1}=11}

 

Como n = 11, quiere decir que el polígono buscado es un Endecágono

 

Igualmente, puedes consultar: https://brainly.lat/tarea/5379115

Adjuntos:
Preguntas similares