Dados los vectores u=(3,5,7),v=(1,2,4),y w=(9,-2,3), y los escalares a=2 y b=-7 verifique si:
i) (u+v)+w=u+(v+w)=(u+w)+v
ii) Calcular: au-(v+bw)
Respuestas
Dados los vectores u, v, w y los escalares a y b.
i) (13,5,14) = (13,5,14) = (13,5,14)
ii) au-(v+bw) = (68,-6,31)
Explicación paso a paso:
Datos;
u = (3,5,7)
v = (1,2,4)
w = (9,-2,3)
a = 2
b = -7
Aplicar suma de vectores;
i) (u+v)+w=u+(v+w)=(u+w)+v
(u+v)+w = [(3,5,7)+(1,2,4)] +(9,-2,3)
(u+v)+w = (3+1, 5+2, 7+4) + (9,-2,3)
(u+v)+w = (4,7,11) + (9,-2,3)
(u+v)+w = (13, 5, 14)
u+(v+w) = (3,5,7) + [(1,2,4)] +(9,-2,3)]
u+(v+w) = (3,5,7) + (10,0,7)
u+(v+w) = (13,5,14)
(u+w)+v = [(3,5,7) + (9,-2,3)] + (1,2,4)
(u+w)+v = (12,3,10) + (1,2,4)
(u+w)+v = (13,5,14)
ii) Calcular: au-(v+bw)
Aplicar suma, resta y producto de un escalar por un vector;
au-(v+bw) = 2(3,5,7) - [(1,2,4)+(-7)(9,-2,3)]
au-(v+bw) = (6,10,14) - [(1,2,4)+(-63,14,-21)]
au-(v+bw) = (6,10,14) - (-62,16,-17)
au-(v+bw) = (68,-6,31)