Actividad integradora 3. Aplicación de la derivada1. Lee y analiza el siguiente planteamiento:Una partícula se mueve en línea recta y su desplazamiento (en metros) está dado por la función:f(s)= t2 – 8t 25Donde t se mide en segundos.2. En un archivo de algún procesador de texto desarrolla lo siguiente:a) Encuentra la velocidad promedio en cada uno de los siguientes intervalos de tiempo:[3,4] [3.5,4] [4,4.5]b) ¿En qué intervalo se observa mayor velocidad promedio?3. Calcula f'(t)a)Encuentra la velocidad instantánea cuando t = 4.b)¿Cuál es el significado de la derivada f'(t) de la función de posición?4.Describe 3 ejemplos de tu vida cotidiana en los que se puede aplicar el concepto de velocidad instantánea o razón de cambio instantáneo.
Respuestas
Las velocidades promedio en cada uno de los intervalos son:
[3,4] => Vm = -1 m/s
[3.5,4] => Vm = -0,5 m/s
[4,4.5] => Vm = 0,5 m/s
En el intervalo en el que se observa mayor velocidad promedio es [3,4]
f'(t) = 2t-8 por lo que cuando t = 4 => f'(t) =0
El significado de la derivada f'(t) de la función de posición es la velocidad instantánea en un punto.
3 ejemplos de tu vida cotidiana en los que se puede aplicar el concepto de velocidad instantánea o razón de cambio instantáneo son:
- Caminar más rápido para llegar al metro antes de que cierre puertas
- Detenerse cuando semáforo cambia a luz roja
- Levantarse de la silla y comenzar a caminar
Según la definición de velocidad promedio Vm, esta es el desplazamiento efectuado en un período de tiempo. El desplazamiento, por otro lado, se la diferencia de las posiciones en los tiempos determinados. Entonces:
Intervalo [3,4]
f(s) = t² - 8t + 25
t = 3 => f(3) = 3² - (8)(3) + 25 = 10 m
t = 4 => f(4) = 4² -(8)(4) + 25 = 9 m
Vm = (9-10)/(4-3) => Vm = -1 m/s
Aplicando lo mismo al resto de los intervalos se obtiene
[3.5,4] => Vm = -0,5 m/s
[4,4.5] => Vm = 0,5 m/s
Según se puede observar el intervalo en donde la velocidad promedio es mayor es el [3,4]
Calculo de la derivada
f'(t) = 2t - 8 por lo tanto
t = 4 => f'(t) = 0
El significado de f'(t) de la función de posición es la velocidad instantánea en un punto específico.
Respuesta: Arodriguez40Universitario
Explicación:
Se observa mayor velocidad en la tercera operacion donde es + 0.5 m / s ya que no tiene restraso la particula que en el caso de los resultados negativos eso representan.