• Asignatura: Matemáticas
  • Autor: jfloresmartinez80
  • hace 8 años

Definir por extension el conjunto C={x/xER donde (3x+1) (x+2) =0}


Mainh: En un momento respondo tu pregunta :D!!

Respuestas

Respuesta dada por: Mainh
8

¡Buenas!


  C=\{x\ /\ x\ \in\ \mathbb{R}\ \wedge\ (3x+1) (x+2) =0\}\\ \\ \textrm{Antes de resolver el problema debemos entender que}\\ \textrm{informaci\'on nos quiere dar el conjunto, debemos comprenderlo.}\\ \\ \textrm{Dice as\'i:}\\ \\ \textrm{El conjunto est\'a formado por}\ "x"\ \textrm{tal que,}\ "x"\ \textrm{ sea un}\\  \textrm{n\'umero real, y cumpla la ecuaci\'on.}\\ \\ /\ \to\ \textrm{"tal que"}\\ \\ \in\ \to\ \textrm{"pertenece a"}\\ \\ \wedge\ \to\ \textrm{"y"}


 \textrm{Ahora vamos a proseguir.}\\ \\ (3x+1)(x+2)=0\\ \\ \textrm{para resolverlo, igualamos cada factor a cero.}\\ \\3x+1=0 \\  \\3x=-1\\ \\ x= \dfrac{-1}{3} \\ \\ \\ x+2=0\\ \\ x=-2\\ \\ \textrm{Las soluciones son}\   \dfrac{-1}{3}}\ \ \textrm{y}\ -2.\\ \\ \textrm{Ambos n\'umeros pertenecen a los reales}\\ \\ \textrm{Ahora podremos  escribir por extensi\'on al conjunto C}.\\ \\ \mathbf{C} = \{ \dfrac{-1}{3}},\ \ -2\}


Mainh: Voy a estar editando la respuesta (no cambiare el resultado, ni la resolución) para probar como se ve en la app
Preguntas similares