1)Si: x(3x+2)+ 1 = ax2 + bx +c hallar: a+b+c
Halle: a+b+c
2) (a-5) x al cuadrado + (2b-3) x ´+ 3c -5 = 3x al cuadrado+ 5x+4
Halle: (a-b) c + b (a-c)
Respuestas
Respuesta dada por:
15
1) Si: x(3x+2)+ 1 = ax² + bx +c; hallar: a + b + c
Se desarrolla primero el binomio para hallar la equivalencia (≡) entre los dos miembros de la igualdad.
x(3x + 2) + 1 =
3x² + 2x + 1 ≡ ax² + bx + c
Esto indica que a = 3; b = 2 y c = 1
Así pues, la suma de los coeficientes es:
a + b + c = 3 + 2 + 1 = 6
2) (a - 5)x² + (2b - 3)x + 3c - 5 = 3x² + 5x + 4; Halle: (a-b) c + b (a-c)
a – 5 = 3 => a = 3 + 5 ∴ a = 8
2b – 3 = 5 => b = (5 +3)/2 = 8/2 = 4 ∴ b = 4
3c + 5 = 4 => c = (4 - 5)/3 = -1/3 ∴ c = -1/3
Ahora se realizan las operaciones para calcular (a-b) c + b (a-c)
(8 – 4)(-1/3) + 4(8 + 1/3) =
4(-1/3) +4(25/3) = -4/3 + 100/3 = 96/3 = 32
Preguntas similares
hace 6 años
hace 9 años
hace 9 años
hace 9 años