Respuestas
Respuesta dada por:
2
¡Buenas!
![\textrm{Una\ funci\'on\ cuadr\'atica\ es\ polin\'omica\ cuando\ toma\ esta\ forma.} \\ \\ y=f(x)=ax^{2}+bx+c\ \ \ \ \ \ (a \neq 0) \\ \\ \textrm{Una\ funci\'on\ cuadr\'atica\ es\ can\'onica\ cuando\ toma\ esta\ forma.} \\ \\ y=f(x)=a(x-h)^{2}+k\ \ \ \ \ (a \neq 0) \textrm{Una\ funci\'on\ cuadr\'atica\ es\ polin\'omica\ cuando\ toma\ esta\ forma.} \\ \\ y=f(x)=ax^{2}+bx+c\ \ \ \ \ \ (a \neq 0) \\ \\ \textrm{Una\ funci\'on\ cuadr\'atica\ es\ can\'onica\ cuando\ toma\ esta\ forma.} \\ \\ y=f(x)=a(x-h)^{2}+k\ \ \ \ \ (a \neq 0)](https://tex.z-dn.net/?f=%5Ctextrm%7BUna%5C+funci%5C%27on%5C+cuadr%5C%27atica%5C+es%5C+polin%5C%27omica%5C+cuando%5C+toma%5C+esta%5C+forma.%7D+%5C%5C++%5C%5C+y%3Df%28x%29%3Dax%5E%7B2%7D%2Bbx%2Bc%5C+%5C+%5C+%5C+%5C+%5C+%28a+%5Cneq+0%29+%5C%5C++%5C%5C+%5Ctextrm%7BUna%5C+funci%5C%27on%5C+cuadr%5C%27atica%5C+es%5C+can%5C%27onica%5C+cuando%5C+toma%5C+esta%5C+forma.%7D+%5C%5C++%5C%5C+y%3Df%28x%29%3Da%28x-h%29%5E%7B2%7D%2Bk%5C+%5C+%5C+%5C+%5C+%28a+%5Cneq+0%29+)
![\mathbb{POLIN\'OMICA} \mathbb{POLIN\'OMICA}](https://tex.z-dn.net/?f=+%5Cmathbb%7BPOLIN%5C%27OMICA%7D)
![f(x)= x(x+5)+4 \\ \\ f(x)=x^{2}+5x+4 f(x)= x(x+5)+4 \\ \\ f(x)=x^{2}+5x+4](https://tex.z-dn.net/?f=f%28x%29%3D+x%28x%2B5%29%2B4+%5C%5C++%5C%5C+f%28x%29%3Dx%5E%7B2%7D%2B5x%2B4)
![\mathbb{CAN\'ONICA} \mathbb{CAN\'ONICA}](https://tex.z-dn.net/?f=%5Cmathbb%7BCAN%5C%27ONICA%7D)
![f(x)= x(x+5)+4 \\ \\ f(x)=x^{2}+5x+4 \\ \\f(x)= x^{2} + 5x + \left( \dfrac{5}{2} \right)^{2} - \left( \dfrac{5}{2} \right)^{2} +4 \\ \\ \\ f(x)=\underbrace{x^{2} + 5x + \left( \dfrac{5}{2} \right)^{2}} - \left( \dfrac{5}{2} \right)^{2} +4 \\ \\ \\ \ldots \hspace{1.27cm} \left( x+\dfrac{5}{2} \right)^{2} \\ \\ \\ \\ f(x)=\left( x+\dfrac{5}{2} \right)^{2} - \left( \dfrac{5}{2} \right)^{2} +4 \\ \\ \\ f(x)=\left( x+\dfrac{5}{2} \right)^{2} - \dfrac{9}{4}
f(x)= x(x+5)+4 \\ \\ f(x)=x^{2}+5x+4 \\ \\f(x)= x^{2} + 5x + \left( \dfrac{5}{2} \right)^{2} - \left( \dfrac{5}{2} \right)^{2} +4 \\ \\ \\ f(x)=\underbrace{x^{2} + 5x + \left( \dfrac{5}{2} \right)^{2}} - \left( \dfrac{5}{2} \right)^{2} +4 \\ \\ \\ \ldots \hspace{1.27cm} \left( x+\dfrac{5}{2} \right)^{2} \\ \\ \\ \\ f(x)=\left( x+\dfrac{5}{2} \right)^{2} - \left( \dfrac{5}{2} \right)^{2} +4 \\ \\ \\ f(x)=\left( x+\dfrac{5}{2} \right)^{2} - \dfrac{9}{4}](https://tex.z-dn.net/?f=f%28x%29%3D+x%28x%2B5%29%2B4+%5C%5C+%5C%5C+f%28x%29%3Dx%5E%7B2%7D%2B5x%2B4+%5C%5C++%5C%5Cf%28x%29%3D+x%5E%7B2%7D+%2B+5x+%2B+++%5Cleft%28+%5Cdfrac%7B5%7D%7B2%7D+%5Cright%29%5E%7B2%7D+-+++%5Cleft%28+%5Cdfrac%7B5%7D%7B2%7D+%5Cright%29%5E%7B2%7D+++%2B4++%5C%5C++%5C%5C++%5C%5C+f%28x%29%3D%5Cunderbrace%7Bx%5E%7B2%7D+%2B+5x+%2B+++%5Cleft%28+%5Cdfrac%7B5%7D%7B2%7D+%5Cright%29%5E%7B2%7D%7D++-+++%5Cleft%28+%5Cdfrac%7B5%7D%7B2%7D+%5Cright%29%5E%7B2%7D+++%2B4++%5C%5C++%5C%5C++%5C%5C+%5Cldots+%5Chspace%7B1.27cm%7D+%5Cleft%28+x%2B%5Cdfrac%7B5%7D%7B2%7D+%5Cright%29%5E%7B2%7D+%5C%5C++%5C%5C++%5C%5C++%5C%5C+f%28x%29%3D%5Cleft%28+x%2B%5Cdfrac%7B5%7D%7B2%7D+%5Cright%29%5E%7B2%7D+-++%5Cleft%28+%5Cdfrac%7B5%7D%7B2%7D+%5Cright%29%5E%7B2%7D+%2B4+%5C%5C++%5C%5C++%5C%5C++f%28x%29%3D%5Cleft%28+x%2B%5Cdfrac%7B5%7D%7B2%7D+%5Cright%29%5E%7B2%7D+-+++%5Cdfrac%7B9%7D%7B4%7D+%0A)
RESPUESTA
![\boxed{f(x)=x^{2}+5x+4} \\ \\ \boxed{ f(x)=\left( x+\dfrac{5}{2} \right)^{2} - \dfrac{9}{4}} \boxed{f(x)=x^{2}+5x+4} \\ \\ \boxed{ f(x)=\left( x+\dfrac{5}{2} \right)^{2} - \dfrac{9}{4}}](https://tex.z-dn.net/?f=%5Cboxed%7Bf%28x%29%3Dx%5E%7B2%7D%2B5x%2B4%7D++%5C%5C++%5C%5C++%5Cboxed%7B+f%28x%29%3D%5Cleft%28+x%2B%5Cdfrac%7B5%7D%7B2%7D+%5Cright%29%5E%7B2%7D+-+%5Cdfrac%7B9%7D%7B4%7D%7D)
RESPUESTA
Preguntas similares
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años