reglas de productos notables y ejemplos de cada uno

Respuestas

Respuesta dada por: javierpd
8
(a+b)²+(a+b)+a+b) es un ejemplo
Respuesta dada por: meliecheverria529
8

Binomio de suma al cuadrado

Un binomio al cuadrado (suma) es igual es igual al cuadrado del primer término, más el doble producto del primero por el segundo más el cuadrado segundo.

(a + b)2 = a2 + 2 · a · b + b2

(x + 3)2 = x 2 + 2 · x ·3 + 3 2 = x 2 + 6 x + 9

Binomio de resta al cuadrado

Un binomio al cuadrado (resta) es igual es igual al cuadrado del primer término, menos el doble producto del primero por el segundo, más el cuadrado segundo.

(a − b)2 = a2 − 2 · a · b + b2

(2x − 3)2 = (2x)2 − 2 · 2x · 3 + 3 2 = 4x2 − 12 x + 9

Suma por diferencia

Una suma por diferencia es igual a diferencia de cuadrados.

(a + b) · (a − b) = a2 − b2

(2x + 5) · (2x - 5) = (2 x)2 − 52 = 4x2 − 25

Binomio de suma al cubo

Un binomio al cubo (suma) es igual al cubo del primero, más el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, más el cubo del segundo.

(a + b)3 = a3 + 3 · a2 · b + 3 · a · b2 + b3

(x + 3)3 = x 3 + 3 · x2 · 3 + 3 · x· 32 + 33 =

= x 3 + 9x2 + 27x + 27

Binomio de resta al cubo

Un binomio al cubo (resta) es igual al cubo del primero, menos el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, menos el cubo del segundo.

(a − b)3 = a3 − 3 · a2 · b + 3 · a · b2 − b3

(2x - 3)3 = (2x)3 - 3 · (2x)2 ·3 + 3 · 2x· 32 - 33 =

= 8x 3 - 36 x2 + 54 x - 27

Preguntas similares