En una tienda se compraron unos adornos de porcelana por 629€.Se rompieron tres y los que quedaron se han vendido a 4€ más de lo que costaron. Si se ha obtenido un beneficio de 85€.¿Cuántos adornos se compraron?
Respuestas
Respuesta dada por:
28
Respuesta: Se compraron 37 adornos de porcelana.
Análisis y desarrollo
Sea la variable A la cantidad total de adornos que se compraron en un principio; por todos ellos se pago una cantidad de 629€, por lo cual el valor de cada uno de ellos fue:
Al romperse tres de ellos quedamos con esta cantidad: A - 3
Los que quedaron se han vendido a 4€ más de lo que costaron, por lo cual el montante total al que asciende la venta es:
El beneficio obtenido es de 85€ más del valor por el cual se compraron:
629 + 85 = 714€
Igualamos la ecuación pasada a este valor:
, ahora nos queda resolver la ecuación
-1887+4A² = 97A, acomodamos la ecuación de 2do grado
4A² - 97A - 1887 = 0
Donde:
a = 4
b = -97
c = -1887
Se obtiene: A = 37, A = -51/4
La cantidad de adornos no puede ser ni negativa ni fraccionaria, así que podemos afirmar que la cantidad de adornos es 37.
Análisis y desarrollo
Sea la variable A la cantidad total de adornos que se compraron en un principio; por todos ellos se pago una cantidad de 629€, por lo cual el valor de cada uno de ellos fue:
Al romperse tres de ellos quedamos con esta cantidad: A - 3
Los que quedaron se han vendido a 4€ más de lo que costaron, por lo cual el montante total al que asciende la venta es:
El beneficio obtenido es de 85€ más del valor por el cual se compraron:
629 + 85 = 714€
Igualamos la ecuación pasada a este valor:
, ahora nos queda resolver la ecuación
-1887+4A² = 97A, acomodamos la ecuación de 2do grado
4A² - 97A - 1887 = 0
Donde:
a = 4
b = -97
c = -1887
Se obtiene: A = 37, A = -51/4
La cantidad de adornos no puede ser ni negativa ni fraccionaria, así que podemos afirmar que la cantidad de adornos es 37.
Preguntas similares
hace 6 años
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años