Un numero natural es tal que su cuadrado excede en 120 al doble de dicho número. Calcule la suma de cifras del triple del número

Respuestas

Respuesta dada por: CryBaby360
3
Primero escribimos la ecuación de lo que significa el enunciado:
 {x}^{2}   = 2x + 120
La igualamos a 0 para factorizarla:
 {x}^{2}  - 2x - 120 = 0
(x=-10) (x=-12)
X=10
X=12

Dado el enunciado podemos considerar que el 12 es el único que cumple con las restricciones:
 {12}^{2}  = (12 \times 2) + 120
144 = 144
Ahora dice calcule la suma de cifras del triple del número:
12 \times 3 = 36
Entonces la suma de sus cifras es:

3 + 6 = 9
Respuesta dada por: Jinh
1
Un numero natural es tal que su cuadrado excede en 120 al doble de dicho número. Calcule la suma de cifras del triple del número.

       x² - 120 = 2x
x² - 2x - 120 = 0  --> ecuación de segundo grado

POR FORMULA GENERAL:

x=\dfrac{- \ b \pm \sqrt{b^{2} -4ac}}{2a} \\  \\   \\ 
x=\dfrac{- \ (-2) \pm \sqrt{(-2)^{2} -4(1)(-120)}}{2(1)} \\  \\
x=\dfrac{2 \pm \sqrt{4 +480}}{2} \\  \\
x=\dfrac{2 \pm \sqrt{484}}{2} \\  \\
x=\dfrac{2 \pm 22}{2} \\  \\

ENTONCES: \\  \\ 

x_1=\dfrac{2 + 22}{2}= \dfrac{24}{2}=12  \\  \\
x_2=\dfrac{2 - 22}{2} = \dfrac{-20}{2} =-10\\  \\

∴ x = {-10 ; 12}

Tomamos el valor positivo: x = 12

 Calcule la suma de cifras del triple del número:

                              3 
× 12 = 36  ---> Triple del numero

Sumamos las cifras:

                                   3 + 6 =  ----> Rta

RTA: La suma de de cifras del triple del numero es 9.

Preguntas similares