Los vértices de un cuadrado son A(3,-1) B(3,2) C(-3,-1) D(-3,2)
1. Dibuja el cuadrado
2. Determina las ecuaciones de la recta de los lados del cuadrado
3. Las ecuaciones de las diagonales del cuadrado
Respuestas
Halla la ecuación de la recta (o rectas) que pasando por el punto P (6, 2) forman un ángulo de 45º con la recta 2x - 3y = 6
2.- En el triángulo ABC siendo A (2, -3), B (-2, -2) y C (0, 3), calcula: a) La ecuación de la mediana correspondiente al vértice A; b) La ecuación de la altura correspondiente al vértice B; c) La ecuación de la mediatriz correspondiente al lado AB.
3.- Sean los puntos A (1, 3) y B (-2, -3), halla la ecuación de la recta que determinan y exprésala de todas las formas posibles, incluye la normal.
4.- Determinar las coordenadas de los vértices B y D del cuadrado que tiene por diagonal AC, donde A (1, 2) y C (9, 6). [B (7, 0) D (3, 8)]
5.- Halla las ecuaciones de las rectas que pasando por el punto A (4, 2) forman con los ejes un triángulo de área 18 u2. (2 soluciones). [x + y - 6 = 0; x + 4y - 12 = 0]
6.- Halla las ecuaciones de las rectas que pasan por el punto A (1, 1) y forman un ángulo de 45º con la recta r: 3x + 4y - 1 = 0. (Dar el resultado en forma general y canónica).
7.- Los vértices opuestos de un cuadrado se hallan en los puntos A (-2, 5) y C (2, 8). Halla la longitud y las ecuaciones de sus diagonales. [l = 5; 3x - 4y + 26 = 0; 8x + 6y - 39 = 0]