AYUDAAA
Camine 17 km al oeste y 8 km al norte.¿cuantos kilómetros deberé caminar para llegar al punto de partida,por el camino mas corto?

Respuestas

Respuesta dada por: gaby20051
2
17 - 8 = 9
R= deberia carminar 9 km
Respuesta dada por: paquirripaco
1
Pensemos en como fué el recorrido: recorrió 17 km al oeste (hacia la izquierda) y luego 8 km al norte (hacia arriba), y sabemos que el camino más corto entre dos puntos es SIEMPRE una línea recta que los una, se estaría formando un triángulo, con base 17 km (izquierda = distancia horizontal) y altura 8 km (arriba = distancia vertical) y líneas verticales y horizontales forman siempre un ángulo de 90º entre ellas, lo que nos indica que se forma un triángulo rectángulo o recto.

Lo que nos piden es encontrar la HIPOTENUSA (recta que une el punto inicial con el final) en un triángulo rectángulo.

Por identidad pitagórica: 

H² = a² + b²

Donde:
H = hipotenusa
a y b = catetos 

Ubicamos datos:
a = 17 km
b = 8 km

Reemplazamos datos y despejamos H:

H² = 17² + 8²

H² = 289 + 64

H² = 353

H = √353 km

Lo cual es aproximadamente:

H = ± 18.79 km

H = 18.79 km

Es decir, para regresar al punto de partida siguiendo el camino mas corto, debe recorrer aproximadamente 18.79 kilómetros.

Preguntas similares