Dos móviles separados 1200 km parten al mismo tiempo al encuentro con velocidades de 40 km/h y 60 km/h; ¿qué tiempo tardarán en encontrarse?
Respuestas
Respuesta:
Explicación paso a paso:
Para plantear problemas sobre móviles que llevan velocidad constante se utilizan las fórmulas del movimiento rectilíneo uniforme:
espacio = velocidad × tiempo
{e=v \cdot t}
Podemos encontrarnos con tres casos de problemas de móviles:
EJEMPLO:
2. Los móviles van en el mismo sentido
Ejercicio de moviles que van en la misma direccion
El espacio recorrido por el primer vehículo menos el espacio recorrido por el 2º vehículo es igual a la distancia que los separa
{e_{AC}-e_{BC} = e_{AB}}
Ejemplo:
Dos ciudades {A} y {B} distan {180\, km} entre sí. A las 9 de la mañana sale un coche de cada ciudad y los dos coches van en el mismo sentido. El que sale de {A} circula a {90 \, km/h}, y el que sale de {B} va a {60 \, km/h}. Hallar el tiempo que tardarán en encontrarse; la hora del encuentro; la distancia recorrida por cada uno.
El tiempo que tardarán en encontrarse
1 Conocemos para cada coche la velocidad. Sustituimos en la fórmula de espacio y obtenemos
{e_{AC}= 90 t,}
{e_{CB}=60 t}
2 Sabemos que el espacio recorrido por el primer coche menos el espacio recorrido por el segundo es igual a {180 \, km}
{\begin{array}{rcl} e_{AC} - e_{CB} & = & 180 \\ && \\ 90t - 60t & = & 180 \end{array}}
3 Resolvemos la ecuación anterior
{ \begin{array}{rcl} 90t - 60t & = & 180 \\ & & \\ 30t & = & 180 \\ & \\ t & = & \displaystyle\frac{180}{30} \\ & & \\ t & = & 6 \end{array}}
Los autos tardarán 6 horas en encontrarse.
La hora del encuentro
Se encontraran a las 3 de la tarde porque parten a las 9 de la mañana y transcurren seis horas hasta el encuentro.
La distancia recorrida por cada coche
Para encontrar la distancia recorrida por cada coche, sustituimos el tiempo {t=6 \, h} en la fórmula de espacio recorrido: {e_{AB} = (90)(6)}= 540, {e_{BC} = (60)(6)}= 360. De esta forma tenemos que el primer coche recorre {540 \, km} y el segundo coche recorre {360 \, km.}