Determina la integral de las funciones siguientes: (Nota: Usted debe determinar el método de integración que corresponda en cada caso.)e) ∫_0^1〖xe^(0.5x) 〗 dx
Respuestas
Respuesta dada por:
0
La pregunta es:
![\text{Calcular }
\displaystyle
\int\limits_{0}^{1}xe^{\frac{1}{2}x}dx \text{Calcular }
\displaystyle
\int\limits_{0}^{1}xe^{\frac{1}{2}x}dx](https://tex.z-dn.net/?f=%5Ctext%7BCalcular+%7D%0A%5Cdisplaystyle%0A%5Cint%5Climits_%7B0%7D%5E%7B1%7Dxe%5E%7B%5Cfrac%7B1%7D%7B2%7Dx%7Ddx)
Solución.
![\displaystyle
I=\int\limits_{0}^{1}xe^{\frac{1}{2}x}dx\\ \\
I=\int\limits_{0}^{1}x\left(e^{\frac{1}{2}x}dx\right)\\ \\ \\
I=\int\limits_{0}^{1}x\cdot d\left(\dfrac{1}{2}e^{\frac{1}{2}x}\right)\\ \\ \\
I=\left.\left(x\cdot \dfrac{1}{2}e^{\frac{1}{2}x}\right)\right|_{0}^1-\int\limits_{0}^{1}\left(\dfrac{1}{2}e^{\frac{1}{2}x}\right)\cdot dx\\ \\ \\
I=\dfrac{1}{2}\sqrt{e}-\dfrac{1}{2}\int\limits_{0}^{1}e^{\frac{1}{2}x}dx \displaystyle
I=\int\limits_{0}^{1}xe^{\frac{1}{2}x}dx\\ \\
I=\int\limits_{0}^{1}x\left(e^{\frac{1}{2}x}dx\right)\\ \\ \\
I=\int\limits_{0}^{1}x\cdot d\left(\dfrac{1}{2}e^{\frac{1}{2}x}\right)\\ \\ \\
I=\left.\left(x\cdot \dfrac{1}{2}e^{\frac{1}{2}x}\right)\right|_{0}^1-\int\limits_{0}^{1}\left(\dfrac{1}{2}e^{\frac{1}{2}x}\right)\cdot dx\\ \\ \\
I=\dfrac{1}{2}\sqrt{e}-\dfrac{1}{2}\int\limits_{0}^{1}e^{\frac{1}{2}x}dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%0AI%3D%5Cint%5Climits_%7B0%7D%5E%7B1%7Dxe%5E%7B%5Cfrac%7B1%7D%7B2%7Dx%7Ddx%5C%5C+%5C%5C%0AI%3D%5Cint%5Climits_%7B0%7D%5E%7B1%7Dx%5Cleft%28e%5E%7B%5Cfrac%7B1%7D%7B2%7Dx%7Ddx%5Cright%29%5C%5C+%5C%5C+%5C%5C%0AI%3D%5Cint%5Climits_%7B0%7D%5E%7B1%7Dx%5Ccdot+d%5Cleft%28%5Cdfrac%7B1%7D%7B2%7De%5E%7B%5Cfrac%7B1%7D%7B2%7Dx%7D%5Cright%29%5C%5C+%5C%5C+%5C%5C%0AI%3D%5Cleft.%5Cleft%28x%5Ccdot+%5Cdfrac%7B1%7D%7B2%7De%5E%7B%5Cfrac%7B1%7D%7B2%7Dx%7D%5Cright%29%5Cright%7C_%7B0%7D%5E1-%5Cint%5Climits_%7B0%7D%5E%7B1%7D%5Cleft%28%5Cdfrac%7B1%7D%7B2%7De%5E%7B%5Cfrac%7B1%7D%7B2%7Dx%7D%5Cright%29%5Ccdot+dx%5C%5C+%5C%5C+%5C%5C%0AI%3D%5Cdfrac%7B1%7D%7B2%7D%5Csqrt%7Be%7D-%5Cdfrac%7B1%7D%7B2%7D%5Cint%5Climits_%7B0%7D%5E%7B1%7De%5E%7B%5Cfrac%7B1%7D%7B2%7Dx%7Ddx)
![I=\dfrac{1}{2}\sqrt{e}-\dfrac{1}{2}\left.\left(\dfrac{1}{2}e^{\frac{1}{2}\right)\right|_{0}^{1}\\ \\ \\
I=\dfrac{1}{2}\sqrt{e}-\dfrac{1}{4}\left.\left(e^{\frac{1}{2}\right)\right|_{0}^{1}\\ \\ \\
I=\dfrac{1}{2}\sqrt{e}-\dfrac{1}{4}\left(e-1\right)\\ \\ \\
I=\dfrac{\sqrt{e}}{2}-\dfrac{e}{4}+\dfrac{1}{4}\\ \\ \\
I=\dfrac{1}{4}\left(\sqrt{e}-e+1\right)
I=\dfrac{1}{2}\sqrt{e}-\dfrac{1}{2}\left.\left(\dfrac{1}{2}e^{\frac{1}{2}\right)\right|_{0}^{1}\\ \\ \\
I=\dfrac{1}{2}\sqrt{e}-\dfrac{1}{4}\left.\left(e^{\frac{1}{2}\right)\right|_{0}^{1}\\ \\ \\
I=\dfrac{1}{2}\sqrt{e}-\dfrac{1}{4}\left(e-1\right)\\ \\ \\
I=\dfrac{\sqrt{e}}{2}-\dfrac{e}{4}+\dfrac{1}{4}\\ \\ \\
I=\dfrac{1}{4}\left(\sqrt{e}-e+1\right)](https://tex.z-dn.net/?f=I%3D%5Cdfrac%7B1%7D%7B2%7D%5Csqrt%7Be%7D-%5Cdfrac%7B1%7D%7B2%7D%5Cleft.%5Cleft%28%5Cdfrac%7B1%7D%7B2%7De%5E%7B%5Cfrac%7B1%7D%7B2%7D%5Cright%29%5Cright%7C_%7B0%7D%5E%7B1%7D%5C%5C+%5C%5C+%5C%5C%0AI%3D%5Cdfrac%7B1%7D%7B2%7D%5Csqrt%7Be%7D-%5Cdfrac%7B1%7D%7B4%7D%5Cleft.%5Cleft%28e%5E%7B%5Cfrac%7B1%7D%7B2%7D%5Cright%29%5Cright%7C_%7B0%7D%5E%7B1%7D%5C%5C+%5C%5C+%5C%5C%0AI%3D%5Cdfrac%7B1%7D%7B2%7D%5Csqrt%7Be%7D-%5Cdfrac%7B1%7D%7B4%7D%5Cleft%28e-1%5Cright%29%5C%5C+%5C%5C+%5C%5C%0AI%3D%5Cdfrac%7B%5Csqrt%7Be%7D%7D%7B2%7D-%5Cdfrac%7Be%7D%7B4%7D%2B%5Cdfrac%7B1%7D%7B4%7D%5C%5C+%5C%5C+%5C%5C%0AI%3D%5Cdfrac%7B1%7D%7B4%7D%5Cleft%28%5Csqrt%7Be%7D-e%2B1%5Cright%29%0A)
Solución.
Preguntas similares
hace 6 años
hace 6 años
hace 9 años
hace 9 años