Determina el volumen del tronco de pirámide
Por favor ayuda es para mi examen

Adjuntos:

Respuestas

Respuesta dada por: sasahmontero8615
1

Respuesta:

         1.09m^{3}

Explicación paso a paso:

Lado: L= 1.4m

Lado: L' = 1m

ap = \sqrt{0.8^{2}-(\frac{1.4-1}{2} )^{2}   }  =\sqrt{0.64-(0.2)^{2 } }=\sqrt{0.64-0.04} =\sqrt{0.6m^{2} } = 0.77m

ap^{2} = h^{2} + (\frac{L-L'}{2} )^{2}

(0.77)^{2} = h^{2} + (\frac{1.4-1}{2} )^{2}

(0.77)^{2} = h^{2} + (0.2)^{2}

0.59 =h^{2} +0.04

0.59-0.04 = h^{2}

0.55 = h^{2}

h = \sqrt{0.55m^{2} }

h = 0.74m

Area-base-mayor: AB = L^{2} = (1.4m)^{2} =1.96m^{2}

Area-de-la-menor:Ab = (L')^{2} =(1m)^{2} = 1m^{2}

Volumen: V = ?

V = \frac{h}{3} (AB +Ab+ \sqrt{AB*Ab} )

V= \frac{0.74m}{3} (1.96m^{2}+1m^{2}  +\sqrt{1.96m^{2} +1m^{2} } )

V= 0.25m ( 2.96m^{2} +\sqrt{1.96m^{2} } ) = 0.25m( 2.96m^{2} +1.4m^{2} )

V = 0.25m(4.36m^{2} ) =  1.09m^{3}

V = 1.09m^{3}

Preguntas similares