Representa en el plano cartesiano las rectas que pasan por cada par de puntos, determina el valor de la pendiente e indica si su gráfica es creciente, decreciente, horizontal o vertical.

Adjuntos:

Respuestas

Respuesta dada por: CharmanderPregunta
2

Pendiente:

A. (4, 5) y (1, 2)

m=\frac{y2-y1}{x2-x1}

m=\frac{2-5}{1-4}

m=\frac{-3}{-3}

m = 1

B. (-1, -2) y (0, 0)

m=\frac{y2-y1}{x2-x1}

m=\frac{0-(-2)}{0-(-1)}

m=\frac{2}{1}

m = 2

C. (\frac{1}{5}, -2) y (\frac{1}{2},-\frac{1}{4})

m=\frac{y2-y1}{x2-x1}

m=\frac{-1/4-(-2)}{1/2-1/5}

m=\frac{\frac{7}{4}}{\frac{3}{10}}

m=\frac{70}{12}

m = 70/12

D. (-1, -2) y (-1, 3)

m=\frac{y2-y1}{x2-x1}

m=\frac{3-(-2)}{-1-(-1)}

m =\frac{5}{0}

m = indefinida

Tipo de gráfica (creciente, decreciente, horizontal o vertical):

A. Creciente

B. Creciente

C. Creciente

D. Vertical (Por esta misma razón tiene pendiente indefinida, puesto que el "desplazamiento" es cero y la recta es perpendicular al eje de las abscisas)

Gráfica:

A. (4, 5) y (1, 2) ⇒ Multimedia 1

B. (-1, -2) y (0, 0) ⇒ Multimedia 2

C. (\frac{1}{5}, -2) y (\frac{1}{2},-\frac{1}{4}) ⇒ Multimedia 3

D. (-1, -2) y (-1, 3) ⇒ Multimedia 4

Adjuntos:
Preguntas similares