Ejercicio 3 . Calificación máxima: 2 puntos. Dadas las matrices: A = ( 0 0 1 0 1 0 1 0 0 ), B = ( 3 0 0 0 3 0 0 0 3 ) , se pide:
a) (1 punto) Calcular A15 y A20.
b) (1 punto) Resolver la ecuación matricial 6X = B − 3AX, donde X es una matriz cuadrada de orden 3.
PRUEBA DE SELECTIVIDAD MADRID CONVOCATORIA JUN 2014-2015 MATEMATICA II. Muchas gracias
Respuestas
Respuesta dada por:
2
Esta es la solución al ejercicio 3 de la prueba de selectividad de Madrid convocatoria JUN 2014 - 2015 de Matematica II:
Dadas las siguientes matrices:
A =![\left[\begin{array}{ccc}0&0&1\\0&1&0\\1&0&0\end{array}\right] \left[\begin{array}{ccc}0&0&1\\0&1&0\\1&0&0\end{array}\right]](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26amp%3B0%26amp%3B1%5C%5C0%26amp%3B1%26amp%3B0%5C%5C1%26amp%3B0%26amp%3B0%5Cend%7Barray%7D%5Cright%5D+)
B =![\left[\begin{array}{ccc}3&0&0\\0&3&0\\0&0&3\end{array}\right] \left[\begin{array}{ccc}3&0&0\\0&3&0\\0&0&3\end{array}\right]](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26amp%3B0%26amp%3B0%5C%5C0%26amp%3B3%26amp%3B0%5C%5C0%26amp%3B0%26amp%3B3%5Cend%7Barray%7D%5Cright%5D+)
a) Observamos que la matriz A es diagonal. Para calcular A¹⁵ y A²⁰,
A² = A.A = I ⇒ Aⁿ = A si n es impar / I si n es par
Donde I es la matriz diagonal![\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=++%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26amp%3B0%26amp%3B0%5C%5C0%26amp%3B1%26amp%3B0%5C%5C0%26amp%3B0%26amp%3B1%5Cend%7Barray%7D%5Cright%5D+)
∴ A¹⁵ = A y A²⁰ = I
b) Para resolver la ecuación matricial: 6X = B - 3AX, comenzamos despejando:
B = 6X - 3AX = (6I + 3A)X
X = (6I + 3A)⁻¹.B
Realizamos primero la operación de suma de matrices,
6I + 3A = C =![\left[\begin{array}{ccc}6&0&0\\0&6&0\\0&0&6\end{array}\right] + \left[\begin{array}{ccc}0&0&3\\0&3&0\\3&0&0\end{array}\right] = \left[\begin{array}{ccc}6&0&3\\0&9&0\\3&0&6\end{array}\right] \left[\begin{array}{ccc}6&0&0\\0&6&0\\0&0&6\end{array}\right] + \left[\begin{array}{ccc}0&0&3\\0&3&0\\3&0&0\end{array}\right] = \left[\begin{array}{ccc}6&0&3\\0&9&0\\3&0&6\end{array}\right]](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D6%26amp%3B0%26amp%3B0%5C%5C0%26amp%3B6%26amp%3B0%5C%5C0%26amp%3B0%26amp%3B6%5Cend%7Barray%7D%5Cright%5D+%2B+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26amp%3B0%26amp%3B3%5C%5C0%26amp%3B3%26amp%3B0%5C%5C3%26amp%3B0%26amp%3B0%5Cend%7Barray%7D%5Cright%5D+%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D6%26amp%3B0%26amp%3B3%5C%5C0%26amp%3B9%26amp%3B0%5C%5C3%26amp%3B0%26amp%3B6%5Cend%7Barray%7D%5Cright%5D+)
Invertimos la matriz resultante, para esto necesitamos usar el método de Gauss - Jordan:
C⁻¹ =![\left[\begin{array}{ccc}6&0&3\\0&9&0\\3&0&6\end{array}\right] = \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right] \left[\begin{array}{ccc}6&0&3\\0&9&0\\3&0&6\end{array}\right] = \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D6%26amp%3B0%26amp%3B3%5C%5C0%26amp%3B9%26amp%3B0%5C%5C3%26amp%3B0%26amp%3B6%5Cend%7Barray%7D%5Cright%5D+%3D+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%26amp%3B0%26amp%3B0%5C%5C0%26amp%3B1%26amp%3B0%5C%5C0%26amp%3B0%26amp%3B1%5Cend%7Barray%7D%5Cright%5D+)
C⁻¹ =![\left[\begin{array}{ccc} \frac{2}{9} &0& \frac{-1}{9} \\0& \frac{1}{9} &0\\ \frac{-1}{9} &0& \frac{2}{9} \end{array}\right] \left[\begin{array}{ccc} \frac{2}{9} &0& \frac{-1}{9} \\0& \frac{1}{9} &0\\ \frac{-1}{9} &0& \frac{2}{9} \end{array}\right]](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D+%5Cfrac%7B2%7D%7B9%7D+%26amp%3B0%26amp%3B+%5Cfrac%7B-1%7D%7B9%7D+%5C%5C0%26amp%3B+%5Cfrac%7B1%7D%7B9%7D+%26amp%3B0%5C%5C+%5Cfrac%7B-1%7D%7B9%7D+%26amp%3B0%26amp%3B+%5Cfrac%7B2%7D%7B9%7D+%5Cend%7Barray%7D%5Cright%5D+)
Finalmente:
X = C⁻¹. B =
. ![\left[\begin{array}{ccc}3&0&0\\0&3&0\\0&0&3\end{array}\right] \left[\begin{array}{ccc}3&0&0\\0&3&0\\0&0&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%26amp%3B0%26amp%3B0%5C%5C0%26amp%3B3%26amp%3B0%5C%5C0%26amp%3B0%26amp%3B3%5Cend%7Barray%7D%5Cright%5D+)
X =![\left[\begin{array}{ccc} \frac{2}{3} &0& \frac{-1}{3} \\0& \frac{1}{3} &0\\ \frac{-1}{3} &0& \frac{2}{3} \end{array}\right] \left[\begin{array}{ccc} \frac{2}{3} &0& \frac{-1}{3} \\0& \frac{1}{3} &0\\ \frac{-1}{3} &0& \frac{2}{3} \end{array}\right]](https://tex.z-dn.net/?f=+%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D+%5Cfrac%7B2%7D%7B3%7D+%26amp%3B0%26amp%3B+%5Cfrac%7B-1%7D%7B3%7D+%5C%5C0%26amp%3B+%5Cfrac%7B1%7D%7B3%7D+%26amp%3B0%5C%5C+%5Cfrac%7B-1%7D%7B3%7D+%26amp%3B0%26amp%3B+%5Cfrac%7B2%7D%7B3%7D+%5Cend%7Barray%7D%5Cright%5D+)
Dadas las siguientes matrices:
A =
B =
a) Observamos que la matriz A es diagonal. Para calcular A¹⁵ y A²⁰,
A² = A.A = I ⇒ Aⁿ = A si n es impar / I si n es par
Donde I es la matriz diagonal
∴ A¹⁵ = A y A²⁰ = I
b) Para resolver la ecuación matricial: 6X = B - 3AX, comenzamos despejando:
B = 6X - 3AX = (6I + 3A)X
X = (6I + 3A)⁻¹.B
Realizamos primero la operación de suma de matrices,
6I + 3A = C =
Invertimos la matriz resultante, para esto necesitamos usar el método de Gauss - Jordan:
C⁻¹ =
C⁻¹ =
Finalmente:
X = C⁻¹. B =
X =
Preguntas similares
hace 6 años
hace 6 años
hace 9 años