• Asignatura: Física
  • Autor: otaky65
  • hace 2 años

Un proyectil es lanzado desde la parte superior de un edificio con una velocidad de 30 m/s, tal como se muestra en la figura. Si la altura del edificio es H=80 ¿determine la rapidez del proyectil al llegar al piso?

Respuestas

Respuesta dada por: arkyta
4

La rapidez con la que cae el proyectil al suelo es de 50 metros por segundo (m/s)

Se trata de un problema de tiro horizontal

El tiro horizontal consiste en lanzar un cuerpo horizontalmente desde cierta altura.

Teniendo una composición de movimientos en dos dimensiones: uno horizontal sin aceleración, y el otro vertical con aceleración constante hacia abajo, que es la gravedad

Se trata de un movimiento rectilíneo uniforme (MRU) en su trayectoria horizontal o eje horizontal y un movimiento uniformemente variado (MRUV) en su trayectoria vertical o en el eje vertical

Al inicio del movimiento el proyectil solo posee una velocidad horizontal  debido a que carece de ángulo de inclinación, por lo tanto no presenta velocidad vertical inicial o sea que \bold  { V_{y}   = 0    }, luego esa velocidad se va incrementando a medida que el proyectil desciende.

Las ecuaciones del tiro horizontal son

Para el eje x (MRU)

\boxed {\bold  {    x =x_{0}   +V_{x}  \ . \ t   }}

Para el eje y (MRUV)

\boxed {\bold  {  V_{y}   =V_{0y} +a_{y}  \ . \ t }}

\boxed {\bold  {    y =y_{0}   +V_{0y}  \ . \ t + \frac{1}{2} \ . \ a_{y}  \ . \ t^{2}  }}

Dado que

\boxed {\bold  { y_{0}= H       }}

\boxed {\bold  { x_{0}= 0       }}

\boxed {\bold  { a_{y}= g       }}

Podemos reescribir como:

Posición

Para el eje x

\boxed {\bold  {    x =x_{0}   +V \ . \ t   }}

Para el eje y

\boxed {\bold  {    y =H + \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

Velocidad

Para el eje x

\boxed {\bold  {  {V_x}   =V_{0x}  }}

\textsf{Donde  } \ \ \ \bold  a_{x} = 0

Para el eje y

\boxed {\bold  {  V_{y}    =g\  . \ t }}

\textsf{Donde  } \ \ \ \bold  a_{y} =g

SOLUCIÓN

Primero calculamos el tiempo de vuelo o de permanencia en el aire del proyectil

\large\textsf{Tomamos un valor de gravedad  } \ \ \ \bold  {g=10 \ \frac{m}{s^{2} }   }

Considerando la altura H desde donde ha sido lanzado \bold {H= 80 \ m }

\large\boxed {\bold  {    y =H - \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

\bold{y= 0}

\large\boxed {\bold  {    0 =H - \frac{1}{2} \ . \ g  \ . \ t^{2}  }}

\large\textsf{Donde despejamos el tiempo }

\boxed {\bold  {    2 \ H  =g \ .\ t^{2}  }}

\boxed {\bold  {  t^{2}      =  \frac{2 \ H}{g }  }}

\boxed {\bold  {  t      = \sqrt{\frac{2 \ H }{g       }    }}}

\boxed {\bold  {  t      = \sqrt{\frac{2\ .  \  80 \ m  }{10 \ \frac{m}{s^{2} }       }    }}}

\boxed {\bold  {  t      = \sqrt{\frac{  160 \not m  }{10 \ \frac{\not m}{s^{2} }       }    }}}

\boxed {\bold  {  t      = \sqrt{16 \ s^{2} }       }   }

\large\boxed {\bold  {  t      = 4\ segundos     }    }

El tiempo de vuelo o de permanencia en el aire del proyectil es de 4 segundos

Hallamos la rapidez del proyectil al llegar al suelo

1) Establecemos el vector velocidad para el tiempo de vuelo de  4 segundos

Para el eje x - Eje horizontal

Dado que en el eje X se tiene un MRU, la velocidad permanece constante en toda la trayectoria. Tomamos el valor de la velocidad inicial

\boxed {\bold  {  {V_x}   =V_{0x}  }}

\large\boxed {\bold  {  {V_x} =30 \  \frac{m}{s} }}

Para el eje y - Eje vertical

Dado que en el eje Y se tiene un MRUV, la velocidad depende de la gravedad y el tiempo

En este movimiento no hay velocidad inicial en el eje Y o vertical \bold  { V_{y}   = 0    }

\boxed {\bold  {  V_{y}    =g\  . \ t }}

\large\textsf{Reemplazamos y resolvemos }

\boxed {\bold  {  V_{y}    =-10 \ \frac{m}{s^{\not 2} }      \  . \  4 \not  s    }}

\boxed {\bold  {  V_{y}    =-40 \ \frac{m}{s}    }}

La velocidad o rapidez para el tiempo de vuelo (que es el instante de tiempo en que el proyectil llega al suelo) se obtiene hallando la velocidad resultante de las componentes horizontal y vertical empleando el teorema de Pitágoras

\large\boxed{ \bold { ||\overrightarrow{V_{R} }| = \sqrt{(V_{x}   )^{2} +(V_{y}  )^{2}       }     } }

\boxed{ \bold { ||\overrightarrow{V_{R} }|| = \sqrt{\left(30 \ \frac{m}{s}   \right)^{2} +\left(-40 \ \frac{m}{s}\right )^{2}       }     } }

\boxed{ \bold { ||\overrightarrow{V_{R} }|| = \sqrt{900 \ \frac{m^{2} }{s^{2} }  +1600 \ \frac{m^{2} }{s^{2} }     }     } }

\boxed{ \bold { ||\overrightarrow{V_{R} }|| = \sqrt{2500 \ \frac{m^{2} }{s^{2} }     } }}

\large\boxed{ \bold { ||\overrightarrow{V_{R} }|| = 50   \  \frac{m}{s}     }}

La rapidez con la que cae el proyectil al suelo es de 50 metros por segundo (m/s)

Podemos determinar la distancia horizontal a la que cae el proyectil

Dado que en el eje X se tiene un MRU para hallar el alcance o la distancia horizontal recorrida por el proyectil, basta multiplicar la velocidad horizontal inicial por el tiempo de vuelo

\large\boxed {\bold  {  d   =V_{0x}  \ . \ t }}

\boxed {\bold  {  d   =V_{x}  \ . \ t }}

\boxed {\bold  {  d   =30 \ \frac{m}{\not s}  \ . \  4\ \not s }}

\large\boxed {\bold  {  d   = 120 \ metros}}

El alcance horizontal  \bold {     x_{MAX} } es de 120 metros

Se agrega gráfica que evidencia la trayectoria del movimiento

Adjuntos:
Preguntas similares