la suma de los cuadrados de los cuatro términos de una proporción geométrica continúa es 7225 hallar la media proporcional si la diferencia de extremos es 75
Respuestas
Respuesta dada por:
13
Tienes la siguiente proporción geométrica continua:
a/b = b/c
⇒ a×c = b²
Te piden encontrar el valor de "b" en este caso
La suma de los cuadrados de los cuatro términos es 7225:
a² + b² + b² + c² = 7225
a² + 2b² + c² = 7225
La diferencia de extremos es 75:
c - a = 75
(c - a)² = 75²
c² - 2ac + a² = 5625
c² - 2b² + a² = 5625
a² + c² = 5625 + 2b²
a² + 2b² + c² = 7225
2b² + 5625 + 2b² = 4b² + 5625 = 7225
4b² = 7225 - 5625 = 1600
b² = 1600/4 = 400
b = √400 = 20
La media proporcional es 20
Saludos!
a/b = b/c
⇒ a×c = b²
Te piden encontrar el valor de "b" en este caso
La suma de los cuadrados de los cuatro términos es 7225:
a² + b² + b² + c² = 7225
a² + 2b² + c² = 7225
La diferencia de extremos es 75:
c - a = 75
(c - a)² = 75²
c² - 2ac + a² = 5625
c² - 2b² + a² = 5625
a² + c² = 5625 + 2b²
a² + 2b² + c² = 7225
2b² + 5625 + 2b² = 4b² + 5625 = 7225
4b² = 7225 - 5625 = 1600
b² = 1600/4 = 400
b = √400 = 20
La media proporcional es 20
Saludos!
Respuesta dada por:
2
Respuesta:
Utilizar: a/b = b/c
a² + 2b² + c² = 7225
a - c = 75
(a - c)² = (75)²
a² - 2ac + c² = 5625
a² + 2b² + c² = 7225
a/b = b/c
b² = ac
a² + 2b² + c² = 7225
a² - 2b² + c² = 5625
4b² = 1600
b² = 400
b = 20
Espero te sirva mi ayuda cuidate mucho Dios te bendiga.
Explicación paso a paso:
Si necesitas ayuda me avisas para ayudarte .
Preguntas similares
hace 6 años
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años