¿Cuántos sabores de jugo distinto se pueden hacer si se cuenta con 7 frutas diferentes?
porfa es para hoy si me responden bien les doy coronita
y no contesten no mas por llos puntos

Respuestas

Respuesta dada por: id1001265
1

El total de sabores de jugo distinto  o de combinaciones con repetición que se pueden hacer si se cuenta con 7 frutas diferentes es de: 1716

Para este resolver este problema la formula y el procedimiento que debemos utilizar de combinaciones es:

Cr n,x = (n+x-1)! / [x! *(n-1)!]

Donde:

  • Cr n,x = combinación de n en x con repetición
  • n = elementos o grupo a combinar
  • x = elementos o grupo para combinar
  • ! = factorial del número

Datos del problema:

  • n = 7 (Frutas)
  • x = 7 (frutas)

Aplicamos la formula de combinación con repetición, sustituimos valores y tenemos que:

Cr n,x = (n+x-1)! / [x! *(n-1)!]

Cr 7,7 = (7+7-1)! / [7! *(7-1)!]

Cr 7,7 = 13! / [7! * 6!]

Descomponemos el 13! y tenemos:

Cr 7,7 = 13 * 12* 11 * 10 *9 *8 * 7! / [7! *6!]

Realizamos las operaciones y tenemos que:

Cr 7,7 = 13 * 12* 11 * 10 *9 *8  / 6!

Cr 7,7 = 1235520 / 720

Cr 7,7 = 1716

Hay un total de 1716 combinaciones posibles con repetición.

¿Qué es combinación?

En matemáticas se denomina combinación o combinaciones, a todas las agrupaciones posibles que pueden hacerse de un número determinado de elementos, sin que se repitan y sin importar el orden en que se encuentren. Cuando los elementos se repiten la combinación se conoce como combinación con repetición

Aprende más sobre combinaciones en: brainly.lat/tarea/41930737 y brainly.lat/tarea/22356225

#SPJ1

Adjuntos:
Preguntas similares