• Asignatura: Matemáticas
  • Autor: NataliaAvellaneda
  • hace 9 años

Un proyectil es lanzado al aire con velocidad de 100pies/sg. Despues de t segundos su distancia d(t) en pies sobre el suelo esta dada por d(t)=40+100t-16t2 (t elevado al 2)
a) Encuentra la maxima altura que alcanza
b) El tiempo que tarda en caer al suelo

Por fis explicado, el ejercicio me esta matando

Respuestas

Respuesta dada por: F4BI4N
2
Hola natalia, 
Es un ejercicio de lanzamiento vertical ,

a) Para hallar la máxima altura tenemos que hallar el momento en que la velocidad sea = 0 ya que en ese momento el objeto habrá hallado su altura máxima.

Para hallar la velocidad , uno deriva la función de distancia por lo tanto : 

d(t)=40+100t-16t2
d ' (t) = 100 - 32t
Bueno ahora hacemos d ' (t) lo que es velocidad = 0 .
0 = 100 - 32t
t = 100/32 => 25/8.
Este es el momento en que el objeto está en su altura máxima . 
Reemplazamos este tiempo en la función de distancia :

d(25/8) = 40 + 100*25/8  - 16(25/8)^2
d(25/8) = 40 + 312,5 - 156,25
d(25/8) = 196,25 pies. 
Esa es la máxima altura.


b) Para hallar el tiempo en que caera , basta suponer que en un momento "t" la distancia recorrida será 0 :

d(t) = 40+100t - 16t^2

Haciendo d(t) = 0 :

0 = 40 + 100t - 16t^2
16t^2 - 100t - 40 = 0 /:2
8t^2 - 50t - 20 = 0 
Usamos la fórmula de ecuación cuadrática :

x = -b +- Raíz de ( b^2 -4ac)
     ____________________
              2a

Reemplazando : 

t = 50 +- V 2500 + 4*8*20
    _____________________
              2*8

t = 50 +- V3140
      ____________
             16
t1 = 50 + 56,03
       _________
          16
t1 = 6,26 [s] 

El otro tiempo es negativo así que no vale la pena sacarlo ,
 Igual la forma que te explique es mas avanzada por lo de derivada , pero podrias haber dejado d(t) = 0  para hallar el tiempo que se demoró el objeto luego dividir el tiempo por 2 y evaluar en la función para hallar su altura máxima. 
El tiempo 6,26 es el tiempo que se demora desde que se lanza el objeto.

Espero haber ayudado , cualquier consulta me avisas.
Saludos.
Preguntas similares