Respuestas
Para sumar dos polinomios se suman los coeficientes de los términos del mismo grado.
P(x) = 2x3 + 5x − 3
Q(x) = 4x − 3x2 + 2x3
1.Ordenamos los polinomios, si no lo están.
Q(x) = 2x3 − 3x2 + 4x
P(x) + Q(x) = (2x3 + 5x − 3) + (2x3 − 3x2 + 4x)
2.Agrupamos los monomios del mismo grado.
P(x) + Q(x) = 2x3 + 2x3 − 3 x2 + 5x + 4x − 3
3.Sumamos los monomios semejantes.
P(x) + Q(x) = 4x3− 3x2 + 9x − 3
Resta de polinomiosLa resta de polinomios consiste en sumar al minuendo el opuesto del sustraendo.
P(x) − Q(x) = (2x3 + 5x − 3) − (2x3 − 3x2 + 4x)
P(x) − Q(x) = 2x3 + 5x − 3 − 2x3 + 3x2 − 4x
P(x) − Q(x) = 2x3 − 2x3 + 3x2 + 5x− 4x − 3
P(x) − Q(x) = 3x2 + x − 3
Multiplicación de polinomiosMultiplicación de un número por un polinomio
Es otro polinomio que tiene de grado el mismo del polinomio y como coeficientes el producto de los coeficientes del polinomio por el número.
3 · ( 2x3 − 3 x2 + 4x − 2) = 6x3 − 9x2 + 12x − 6
Multiplicación de un monomio por un polinomioSe multiplica el monomio por todos y cada uno de los monomios que forman el polinomio.
3 x2 · (2x3 − 3x2 + 4x − 2) = 6x5 − 9x4 + 12x3 − 6x2
Multiplicación de polinomiosP(x) = 2x2 − 3 Q(x) = 2x3 − 3x2 + 4x
Se multiplica cada monomio del primer polinomio por todos los elementos segundo polinomio.
P(x) · Q(x) = (2x2 − 3) · (2x3 − 3x2 + 4x) =
= 4x5 − 6x4 + 8x3 − 6x3 + 9x2 − 12x =
Se suman los monomios del mismo grado.
= 4x5 − 6x4 + 2x3 + 9x2 − 12x
Se obtiene otro polinomio cuyo grado es la suma de los grados de los polinomios que se multiplican.
También podemos multiplicar polinomios de siguiente modo:
checa la imagen
Respuesta:
Suma de polinomios
Para sumar dos polinomios se suman los coeficientes de los términos del mismo grado.
P(x) = 2x3 + 5x − 3
Q(x) = 4x − 3x2 + 2x3
1.Ordenamos los polinomios, si no lo están.
Q(x) = 2x3 − 3x2 + 4x
P(x) + Q(x) = (2x3 + 5x − 3) + (2x3 − 3x2 + 4x)
2.Agrupamos los monomios del mismo grado.
P(x) + Q(x) = 2x3 + 2x3 − 3 x2 + 5x + 4x − 3
3.Sumamos los monomios semejantes.
P(x) + Q(x) = 4x3− 3x2 + 9x − 3
Resta de polinomios
La resta de polinomios consiste en sumar al minuendo el opuesto del sustraendo.
P(x) − Q(x) = (2x3 + 5x − 3) − (2x3 − 3x2 + 4x)
P(x) − Q(x) = 2x3 + 5x − 3 − 2x3 + 3x2 − 4x
P(x) − Q(x) = 2x3 − 2x3 + 3x2 + 5x− 4x − 3
P(x) − Q(x) = 3x2 + x − 3
Multiplicación de polinomiosMultiplicación de un número por un polinomio
Es otro polinomio que tiene de grado el mismo del polinomio y como coeficientes el producto de los coeficientes del polinomio por el número.
3 · ( 2x3 − 3 x2 + 4x − 2) = 6x3 − 9x2 + 12x − 6
Multiplicación de un monomio por un polinomio
Se multiplica el monomio por todos y cada uno de los monomios que forman el polinomio.
3 x2 · (2x3 − 3x2 + 4x − 2) = 6x5 − 9x4 + 12x3 − 6x2
Multiplicación de polinomios
P(x) = 2x2 − 3 Q(x) = 2x3 − 3x2 + 4x
Se multiplica cada monomio del primer polinomio por todos los elementos segundo polinomio.
P(x) · Q(x) = (2x2 − 3) · (2x3 − 3x2 + 4x) =
= 4x5 − 6x4 + 8x3 − 6x3 + 9x2 − 12x =
Se suman los monomios del mismo grado.
= 4x5 − 6x4 + 2x3 + 9x2 − 12x
Se obtiene otro polinomio cuyo grado es la suma de los grados de los polinomios que se multiplican.
También podemos multiplicar polinomios de siguiente modo:
checa la imagen
Explicación paso a paso: