se carga un capacitor a un potencial de 12V y luego se conecta a un voltimetro com una resistencia interna de 3.40MΩ. Al cabo de 4.00s la lectura del voltimetro es de 3.00V ¿cual es la capacitancia?
Respuestas
Primero hay que calcular la corriente que pasa por la resistencia interna del voltimetro:
I=V/R
I=12/3.4x10^6
I=3.5x10^-6A
Ahora bien, se tiene que:
i=C.dV/dt
Estos diferenciales, expresan el cambio tanto del voltaje como del tiempo entonces despejando C:
C=idt/dV
C=(3.5x10^-6)(4)/9
C=1.5x10^-6
C=1.5uF (microfaradios)
El capacitor se descarga de forma exponencial a través del voltímetro. Dado que la diferencia de potencial es directamente proporcional a la carga sobre las placas, el voltaje a través de las placas disminuye exponencialmente con la misma constante de tiempo que la carga.
La lectura del voltímetro obedece a la ecuación V=Vmáx(e^(-t/T)), donde T es la constante de tiempo T=RC.
Despejamos para T
T = t / -ln (V / Vmáx)
Sustituimos t = 4s, V = 3V, Vmáx = 12V
T = 4 / -ln (3/12) = 2.89s
Despejamos la capacitancia de T=RC
C = T/R
Sustituimos T = 2.89s y la resistencia interna del voltímetro R=3.4MΩ
C = 2.89/3.4x10^6 = 8.49x10^-7 F
RESPUESTA:
C = 8.49x10^-7 F