Si el área del rectángulo es (4m^2+4m-35)(cm)^2 y su perímetro de un rectángulo es (8m+4)cm, cuanto mide el largo del rectángulo si su altura es de (2m-5)cm. *
(2m+7)cm
(2m-7)cm
(m+7)cm
(m-7)cm
Respuestas
Respuesta:
el largo mide (2m + 7) cm
Explicación paso a paso:
Area del rectagulo
Area = largo × ancho
Perimetro del rectangulo
es la suma de todos sus lados
p = largo + largo + ancho + ancho
perimetro = 2largo + 2ancho
datos del problema
área del rectángulo = (4m² + 4m - 35) cm²
perímetro del rectángulo = (8m + 4) cm
largo = L
ancho = (2m - 5) cm
reemplazamos en la formula del area del rectangulo
Area = largo × ancho
(4m² + 4m - 35) cm² = L × (2m - 5) cm
despejamos L
(4m² + 4m - 35) cm²
-------------------------------- = L
(2m - 5) cm
factorizamos
4m² + 4m - 35
2m +7
2m -5
4m² + 4m - 35 = (2m - 5)(2m +7) cm²
reemplazamos
(2m - 5)(2m +7) cm²
-------------------------------- = L
(2m - 5) cm
simplificamos
(2m + 7 ) cm = L
el largo mide (2m + 7) cm
--
comprobamos con la formula del perimetro del rectangulo
perimetro = 2largo + 2ancho
(8m + 4) cm = 2(L) + 2(2m - 5) cm
simplificamos ( sacamos mitad)
(4m + 2) cm = L + (2m - 5) cm
despejamos L
(4m + 2 - 2m + 5) cm = L
2m + 7 = L
el largo mide (2m + 7) cm