Si x ∈ [-2 ; 3 ] ; calcule \frac{a}{2} +4b
Si ( 4+3x-x^{2} ) ∈ [ a,b ]

Respuestas

Respuesta dada por: elrod123
1

Explicación paso a paso:

A= -x^{2} +3x + 4 => A= - [ x^{2} - 2( x ) \frac{3}{2} + \frac{9}{4} - \frac{9}{4} ] + 4

A= - [ (x - \frac{3}{2} )^{2} - \frac{9}{4} ] +4

A= - (x - \frac{3}{2} )^{2} + \frac{9}{4} + 4 => A= (x - \frac{3}{2} )^{2} + \frac{25}{4}

Del dato formado:

A= - 2 - \frac{3}{2} x - \frac{3}{2} ≤ 3 - \frac{3\\}{2}

A= - \frac{7}{2} ≤ x - \frac{3}{2}\frac{3}{2}

A= 0 (-1)(-1) (x - \frac{3}{2} )^{2}\frac{49}{4} (-1)  

A= - \frac{49}{4} + \frac{25}{4} ≤ - (x - \frac{3}{2} )^{2} + \frac{25}{4} ≤ 0 + \frac{25}{4}

A= \frac{-49+25}{4} ≤ A ≤ \frac{25}{4}

A= - 6 ≤ A ≤ \frac{25}{4}

A∈ [ -6 ; \frac{25}{4} ] = [ a,b]

a= -6 ∧ b= \frac{25}{4}

\frac{a}{2} + 2b = \frac{-6}{2} +4 . \frac{25}{4}

= -3 +25

= 22

Preguntas similares