Respuestas
Respuesta dada por:
1
∫eˣ/(e²ˣ + 1) dx
Por sustitución:
t= eˣ
dt/dx = eˣ
dx=dt/eˣ
como t= eˣ,
dx= dt/t
∫eˣ/(e²ˣ + 1) dx
= ∫t/(t² + 1) dt/t
= ∫1/(t² + 1) dt
Esta integral es inmediata, asi:
∫1/(t² + 1) dt = arctan(t)
Reemplazando nuevamente t:
arctan(t) = arctan(eˣ) + c
R: ∫eˣ/(e²ˣ + 1) dx = arctan(eˣ) + c
Por sustitución:
t= eˣ
dt/dx = eˣ
dx=dt/eˣ
como t= eˣ,
dx= dt/t
∫eˣ/(e²ˣ + 1) dx
= ∫t/(t² + 1) dt/t
= ∫1/(t² + 1) dt
Esta integral es inmediata, asi:
∫1/(t² + 1) dt = arctan(t)
Reemplazando nuevamente t:
arctan(t) = arctan(eˣ) + c
R: ∫eˣ/(e²ˣ + 1) dx = arctan(eˣ) + c
Preguntas similares
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años