• Asignatura: Física
  • Autor: pabloguero3
  • hace 4 años

Un disco LP gira a partir del reposo hasta alcanzar una velocidad de 650 r.p.m en un lapso de 9 segundos. (a) ¿Cuál es su aceleración angular (en rad/s2), supuesta constante? (b) ¿Cuántas revoluciones da en 9 s? (c) ¿Cuál es la componente tangencial de la aceleración lineal (en m/s2) de una partícula del disco situada a 8cm del centro, al alcanzar las 650 r.p.m?

AYUDAAAAAAAAA

Respuestas

Respuesta dada por: mariaalvarezgom0901
2

Respuesta:

El movimiento circular es un movimiento curvilíneo cuya trayectoria es una

circunferencia. Son ejemplos: el movimiento de cualquier punto de un disco o una rueda

en rotación, el de los puntos de las manecillas de un reloj. Como primera aproximación,

es el movimiento de la Luna alrededor de la Tierra y del electrón alrededor del protón en

un átomo de hidrógeno. Debido a la rotación diaria de la Tierra, todos los cuerpos que

están en su superficie tienen un movimiento circular en relación con el eje de rotación de

la Tierra.

Movimiento Circular Uniforme

Imaginemos una partícula que se mueve en una trayectoria circular, con rapidez

constante: al ser la trayectoria una curva el vector velocidad cambia su dirección en

cada instante (es tangente a la trayectoria en cada punto), esto implica que:

v

= constante pero

v  constante

Este movimiento recibe el nombre de Movimiento Circular Uniforme.

En el caso de una bola apoyada sobre una superficie horizontal lisa que gira en el

extremo de una cuerda, la fuerza ejercida por ésta sobre la bola es la que obliga a la

velocidad a cambiar de dirección en cada punto. El vector velocidad siempre es

tangente a la trayectoria de la partícula y perpendicular al radio de la misma, es un

vector de dirección variable y de módulo constante. Concluimos que debe existir una

aceleración que mida el cambio de velocidad en cada intervalo de tiempo.

Si aplicamos la segunda ley de Newton a la

partícula, resultará que la única fuerza no

equilibrada es la que aplica la cuerda sobre la

bola, por lo tanto:

F  T  ma

Obsérvese que el vector

a

tiene la dirección y

sentido de la fuerza

T

, por lo tanto es siempre

perpendicular al vector

v

y se produce debido al

cambio en la dirección del mismo.

Esta resultante de fuerzas (en la dirección radial) está dirigida hacia el centro de la

trayectoria y se la suele llamar Fuerza Radial o Centrípeta

  Fc

, siendo la encargada

de modificar la dirección de la velocidad, obligando a la partícula a seguir la trayectoria circular

Explicación:

me darias una coronita


acosta1737: Tienes el procedimiento?
Preguntas similares