Respuestas
Respuesta:
\lim _{x\to \infty \:}\left(\frac{\left(2x+2\right)\left(2x+1\right)}{\left(x+1\right)\left(x+1\right)}\right)=4
Explicación paso a paso:
\lim _{x\to \infty \:}\left(\frac{\left(2x+2\right)\left(2x+1\right)}{\left(x+1\right)\left(x+1\right)}\right)
=\lim _{x\to \infty \:}\left(\frac{2x\left(1+\frac{2}{2x}\right)\left(2x+1\right)}{\left(x+1\right)\left(x+1\right)}\right)
=2\cdot \lim _{x\to \infty \:}\left(\frac{x\left(1+\frac{2}{2x}\right)\left(2x+1\right)}{\left(x+1\right)\left(x+1\right)}\right)
=2\cdot \lim _{x\to \infty \:}\left(\frac{2x+1}{x+1}\right)
=2\cdot \lim _{x\to \infty \:}\left(\frac{2+\frac{1}{x}}{1+\frac{1}{x}}\right)
=2\cdot \frac{\lim _{x\to \infty \:}\left(2+\frac{1}{x}\right)}{\lim _{x\to \infty \:}\left(1+\frac{1}{x}\right)}
=2\cdot \frac{2}{1}
=4