pseudocódigo de lanzamiento y caida libre con vectores,lo mas pronto posible..........El programa se llama PSeint
Respuestas
Cuando una pelota rebota sobre un tablero rígido, la componente de la velocidad perpendicular al tablero disminuye su valor, quedando la componente paralela inalteradavx=ux
vy=-e·uy
Alturas de los sucesivos rebotes
Supongamos que una pelota se deja caer desde una altura inicial h. Vamos a calcular las alturas de los sucesivos rebotes.
1.-Primer rebote
La velocidad de la pelota antes del choque con el suelo se calcula aplicando el principio de conservación de la energía
La velocidad de la pelota después del choque es (en módulo) v1=e·u1
La pelota asciende con una velocidad inicial v1, y alcanza una altura máxima h1 que se calcula aplicando el principio de conservación de la energía
2.-Segundo rebote
La velocidad de la pelota antes del choque con el suelo se calcula aplicando el principio de conservación de la energía
La velocidad de la pelota después del choque es v2=e·u2
La pelota asciende con una velocidad inicial v2, y alcanza una altura máxima h2 que se calcula aplicando el principio de conservación de la energía
3.-Rebote n
Después del choque n, la altura máxima que alcanza la pelota es
hn=e2n·h
Pérdida de energía que experimenta la pelota
En el primer choque, la pelota pierde una energía
En el segundo choque, la pelota pierde una energía
En el choque n la pelota pierde una energía
La suma de ΔE1+ ΔE2+ ΔE3+…. ΔEn es la energía perdida por la pelota después de n choques. Después de infinitos choques la pelota habrá perdido toda su energía inicial mgh. Vamos a comprobarlo sumando los infinitos términos de una progresión geométrica de razón e2 y cuyo primer término es ΔE1
Tiempo que tarda la pelota en pararse.El tiempo que tarda la pelota en llegar al suelo cuando se deja caer desde una altura h partiendo del reposo es
La pelota rebota y sube hasta una altura h1, a continuación cae de nuevo al suelo. El tiempo que tarda en subir y bajar es
La pelota rebota y sube hasta una altura h2, y a continuación cae de nuevo al suelo. El tiempo que tarda en subir y bajar es
El tiempo total tras infinitos rebotes es la suma de t0 y los términos de una progresión geométrica cuyo primer término es 2t0e y cuya razón es e.
Si a la pelota se le proporciona una velocidad inicial horizontal vx. Después de infinitos rebotes se desplaza una distancia horizontal x=vx·t∞
Medida del coeficiente de restitución e y la aceleración de la gravedad g.
El tiempo tn que pasa la pelota en el aire entre dos sucesivos choques con el suelo es
Tomando logaritmos
ln tn=n·lne+ln(2t0)
Si representamos gráficamente ln tn en función de n obtenemos una línea recta, cuya pendiente es el coeficiente de restitución e, y cuya ordenada en el origen es ln(2t0)Midiendo la ordenada en el origen obtenemos 2t0
conocida la altura h a la que se ha dejado caer inicialmente a la pelota despejamos la aceleración de la gravedad g.