• Asignatura: Física
  • Autor: shirleymishel1
  • hace 9 años

ayudemen a resolver  un auto parte de la ciudad A y se mueve a la ciudad B a 60km/h al mismo tiempo un auto de la ciudad B se mueve a la ciudad A a 80km/h, suponga que la distancia entre las dos ciudades es de 280km.calcule la distancia de la ciudad A en la que los carros se cruzan

Respuestas

Respuesta dada por: ridick2014
4
Primero identificamos ante qué problema estamos, es un MRU. Ahora bien, el momento en el que los autos se crucen ambos van a estar en el mismo lugar (obviamente), esto lo podemos expresar como

x_{1}(t) = x_{2}(t)

Ahora tengamos a mano la ecuación de MRU: x = x_{o} + vt  y planteemos la ecuación de cada auto. Todo depende del punto de referencia que tomemos, en este caso yo tomaré A como el origen.

x=60\frac{km}{h}t\\
x=280km - 80\frac{km}{h}t

Ahora bien, lo que sigue es pura Álgebra. Tenemos dos ecuaciones con 2 incógnicas (x y t). Sabemos que cuando se encuentran ambos estarán en el mismo lugar entonces sus destinos, por llamarlo de alguna manera, deberan ser los mismos con lo cual podemos igualar ambas ecuaciones y despejar el tiempo.
60\frac{km}{h}t=280km - 80\frac{km}{h}t\\
0=280km-100\frac{km}{h}t\\
t = \frac{280km}{100\frac{km}{h}} = 2.8horas

entonces se encontraron 2.8hs luego de haber partido. Ahora para saber en qué lugar se encontraron podríamos simplemente reemplazar en cualquiera de las dos ecuaciones, reemplacemos en la primera ecuación, la del auto que parte de A.

x=60\frac{km}{h}2.8hs = 168km

ahora si queremos saber a qué distancia de la ciudad A a la que se cruzaron simplemente hacemos

280km - 168km = 112km

Preguntas similares