Respuestas
Respuesta dada por:
5
a) [ (x-2) / (2x + 1) ] * [ (2x) / (x^2 + x) ] = [ (x-2) / (2x + 1) ] * [ (2x) / x (x + 1) ]
= [ (x-2) / (2x + 1) ] * [ 2 / x + 1 ]
= [2(x-2) / (x+1)(2x+1)]
= [ 2(x-2) / (2x^2 +x +2x + 1) ]
= [2(x-2) / (2x^2 + 3x + 1)]
b) [ 4 / (x^2 -5)] * [(x - 2) / (x^2 - 3x + 4)] = [4 * (x-2) / (x^2 - 5)*(x^2 - 3x + 4)]
= 4(x-2) / (x^4 - 3x^3 + 4x^2 - 5x^2 - 15x + 20
= 4(x-2) / (x^4 - 3x^3 - x^2 - 15x + 20)
= [ (x-2) / (2x + 1) ] * [ 2 / x + 1 ]
= [2(x-2) / (x+1)(2x+1)]
= [ 2(x-2) / (2x^2 +x +2x + 1) ]
= [2(x-2) / (2x^2 + 3x + 1)]
b) [ 4 / (x^2 -5)] * [(x - 2) / (x^2 - 3x + 4)] = [4 * (x-2) / (x^2 - 5)*(x^2 - 3x + 4)]
= 4(x-2) / (x^4 - 3x^3 + 4x^2 - 5x^2 - 15x + 20
= 4(x-2) / (x^4 - 3x^3 - x^2 - 15x + 20)
Preguntas similares
hace 6 años
hace 6 años
hace 9 años
hace 9 años
hace 9 años