• Asignatura: Física
  • Autor: r3ntamoreno
  • hace 5 años

el movimiento de las partículas que constituyen un gas es mayor que el de las que forman un líquido o un sólido
verdadero o falso
porfa es para ahorita​

Respuestas

Respuesta dada por: denisse0630
37

Respuesta:

verdadero

Explicación:

La materia en estado gaseoso tiene más energía cinética que el líquido y sólido. Además de que sus partículas están unidas por fuerzas muy débiles de atracción, por lo que vibran, rotan y se desplazan ocupando todo el espacio disponible y muy separadas entre sí.


r3ntamoreno: Gracias, me salvaste la vida
r3ntamoreno: entre en crisis por está pregunta xd
Respuesta dada por: reynaroberto250
10

VERDADERO

EXPLICACION

         |

        V

Dichos contenidos están presentes en los currículos de Física y Química de la educación básica, con independencia del marco legal, pues introducen al alumno en el conocimiento químico de la materia. Aunque la teoría cinética molecular obvia la composición atómica de las partículas, no deja de ser un contenido deseable para introducir a los alumnos en el mundo de la química pues permite diferenciar y establecer relaciones entre los niveles macro, micro y simbólico de la materia.

Sin embargo, las relaciones entre el nivel macro y micro de la materia no suelen abordarse en la mayoría de las propuestas de enseñanza de modo suficiente y explicito, y menos aún las relaciones con el nivel simbólico; así, las diferencias que se establecen en las propiedades comunes al estado de agregación, y las semejanzas y diferencias en el comportamiento macroscópico de sólidos, líquidos y gases, no se interpretan de modo explicito desde los postulados del modelo cinético particular y las diferentes estructuras que resultan a nivel microscópico, posiblemente, porque los profesores conocen las dificultades de aprendizaje que tiene para los alumnos, pues les exige una capacidad de abstracción que no dispone la mayoría. La propuesta de enseñanza que presentamos, utilizando analogías, tiene como finalidad facilitar estas relaciones, haciendo más comprensivo el aprendizaje de estos contenidos. Las analogías favorecen que los alumnos, que están en la transición entre pensamiento concreto y abstracto, puedan visualizar el modelo cinético particular, comprender mejor sus presupuestos y establecer relaciones con las propiedades y comportamiento de sólidos, líquidos y gases.

La propuesta de enseñanza comienza con el estudio de los estados de agregación, por tanto, obvia algunos conceptos iniciales en el estudio de la materia que resultan conveniente hayan sido abordados previamente; por tanto, serían prerrequisitos para mejorar el aprendizaje sobre los contenidos propios de la propuesta. A continuación, se señalan cuáles son los contenidos que los alumnos han debido estudiar previamente con las recomendaciones didácticas correspondientes:

- Concepto de materia. La primera aproximación al concepto de materia debería hacerse a través de su identificación en palabras concretas (Plastilina. Presión. Madera. Cristal. Agua. Dolor. Cobre. Alcohol. Aire. Butano. Calor. Colonia. Papel. Plástico. Granito. Color. Temperatura. …..). Todas tienen un significado construido por otras personas, que compartimos o podemos compartir, pero sólo algunas son materia. La mayor parte de las cosas que identificamos como materia son fácilmente percibidas por nuestros sentidos. Se trata, primero, de reconocer que no todos los objetos o fenómenos que conocemos son materia; y segundo, definirla de modo operativo a través de sus propiedades generales en el nivel macroscópico.

- Concepto de propiedad general de la materia. Tras la identificación de la materia por su diferencia sensorial con lo que no es materia, debe identificarse operativamente asignándoles propiedades generales a cualquier sistema material que se vaya a estudiar; en el nivel macroscópico son suficientes la masa, el volumen y la temperatura. Aunque no sea habitual referirse a la temperatura al introducir el concepto de materia, es conveniente hacerlo antes del estudio de la agregación de la materia; se recomienda trabajar con la balanza y la probeta para medir masas y volúmenes de sólidos, de líquidos y, si es posible, de gases, así como hacer medidas de temperatura de líquidos con el termómetro.  Se deben trabajar los conceptos de magnitud y unidad de medida, primero, con medidas directas de magnitudes (masa, volumen y temperatura) y, segundo, con medidas indirectas (cálculo de volumen de sólido regular a partir de medida de longitudes; cálculo del volumen de sólido irregular por medida con probeta del líquido desplazado). También debería comprobarse la conservación de masa y volumen en cambios de forma de sólidos y líquidos.

- Concepto de diversidad de la materia. Frente al reconocimiento de la unidad de la materia a nivel macroscópico, a través de sus propiedades generales, es necesario reconocer su diversidad como consecuencia de tres hechos: la agregación (sólidos, líquidos y gases), la composición (mezclas y sustancias puras) y las fases (homogénea y heterogénea). Dichos hechos constituyen criterios de clasificación que permiten identificar a los sistemas materiales asignándoles las correspondientes categorías; un puñado de arena es una mezcla sólida heterogénea; el agua de una botella mineral es una mezcla líquida homogénea; etc.

- Concepto de propiedad específica de la materia. Es conveniente diferenciar otras propiedades conocidas por los alumnos (color, olor, densidad, solubilidad, elasticidad, etc.) de las propiedades generales, destacando la variabilidad de las propiedades específicas en función de la composición de la materia.

Preguntas similares