desde una ciudad a parte un tren hacia ciudad b , con una rapidez de 80km en el mismo instante parte otro de la ciudad b hacia la ciudad a coon una rapidez de 100km si lo distancia entre las ciudaddes es 340km calcular: (a) la distancia de la ciudad a al lugar de encuentro y (b)el tiempo que tarda en encontrar
Respuestas
{e_{AC} + e_{CB} = e_{AB}}
El espacio recorrido por el primero hasta el punto de encuentro más el espacio que ha recorrido el segundo es igual a la distancia que los separa
Ejemplo:
Dos ciudades {A} y {B} distan {300 \, km} entre sí. A las 9 de la mañana parte de la ciudad {A} un coche hacia la ciudad {B} con una velocidad de {90 \, km/h}, y de la ciudad {B} parte otro hacia la ciudad {A} con una velocidad de {60 \, km/h}. Hallar el tiempo que tardarán en encontrarse; la hora del encuentro; la distancia recorrida por cada uno.
El tiempo que tardarán en encontrarse
1 Conocemos para cada coche la velocidad. Sustituimos en la fórmula de espacio y obtenemos
{e_{AC}= 90 t,}
{e_{CB}=60 t}
2 Sabemos que el espacio recorrido por el primer coche más el espacio recorrido por el segundo es igual a {300 \, km}
{\begin{array}{rcl} e_{AC} + e_{CB} & = & 300 \\ && \\ 90t + 60t & = & 300 \end{array}}
3 Resolvemos la ecuación anterior
{ \begin{array}{rcl} 90t + 60t & = & 300 \\ & & \\ 150t & = & 300 \\ & \\ t & = & \displaystyle\frac{300}{150} \\ & & \\ t & = & 2 \end{array}}
Los autos tardarán 2 horas en encontrarse.
La hora del encuentro
Se encontrarán a las 11 de la mañana porque parten a las 9 de la mañana y transcurren dos horas hasta el encuentro.
La distancia recorrida por cada coche
Para encontrar la distancia recorrida por cada coche, sustituimos el tiempo {t=2 \, h} en la fórmula de espacio recorrido
{e_{AB} = (90)(2)}= 180
{e_{BC} = (60)(2)}= 120
De esta forma tenemos que el primer coche recorre {180 \, km} y el segundo coche recorre {120 \, km.}
2. Los móviles van en el mismo sentido
Ejercicio de moviles que van en la misma direccion
El espacio recorrido por el primer vehículo menos el espacio recorrido por el 2º vehículo es igual a la distancia que los separa
{e_{AC}-e_{BC} = e_{AB}}
Ejemplo:
Dos ciudades {A} y {B} distan {180\, km} entre sí. A las 9 de la mañana sale un coche de cada ciudad y los dos coches van en el mismo sentido. El que sale de {A} circula a {90 \, km/h}, y el que sale de {B} va a {60 \, km/h}. Hallar el tiempo que tardarán en encontrarse; la hora del encuentro; la distancia recorrida por cada uno.
El tiempo que tardarán en encontrarse
1 Conocemos para cada coche la velocidad. Sustituimos en la fórmula de espacio y obtenemos
{e_{AC}= 90 t,}
{e_{CB}=60 t}
2 Sabemos que el espacio recorrido por el primer coche menos el espacio recorrido por el segundo es igual a {180 \, km}
{\begin{array}{rcl} e_{AC} - e_{CB} & = & 180 \\ && \\ 90t - 60t & = & 180 \end{array}}
3 Resolvemos la ecuación anterior
{ \begin{array}{rcl} 90t - 60t & = & 180 \\ & & \\ 30t & = & 180 \\ & \\ t & = & \displaystyle\frac{180}{30} \\ & & \\ t & = & 6 \end{array}}
Los autos tardarán 6 horas en encontrarse.
La hora del encuentro
Se encontraran a las 3 de la tarde porque parten a las 9 de la mañana y transcurren seis horas hasta el encuentro.
La distancia recorrida por cada coche
Para encontrar la distancia recorrida por cada coche, sustituimos el tiempo {t=6 \, h} en la fórmula de espacio recorrido: {e_{AB} = (90)(6)}= 540, {e_{BC} = (60)(6)}= 360. De esta forma tenemos que el primer coche recorre {540 \, km} y el segundo coche recorre {360 \, km.}
3. Los móviles parten del mismo punto y con el mismo sentido
{e_{1}=e_{2}}
El tiempo que tardará el segundo coche en alcanzar al primero.
1 Si el tiempo empleado por el primer coche es {t}, el del segundo que sale tres horas más tarde será {t-3}.
Sustituimos en la fórmula de espacio y obtenemos
{e_{1}= 90 t,}
{e_{2}=120(t-3)}
2 Sabemos que el espacio recorrido por ambos coches es el mismo
{\begin{array}{rcl} e_{1} & = & e_{2} \\ && \\ 90t & = & 120(t-3) \end{array}}
3 Resolvemos la ecuación anterior
{ \begin{array}{rcl} 90t & = & 120(t-3) \\ & & \\ -30t & = & -360 \\ & \\ t & = & \displaystyle\frac{-360}{-30} \\ & & \\ t & = & 12 \end{array}}
El primer coche tarda {12 \, h}.
El segundo coche tarda {(12-3) = 9 \, h}.
La distancia a la que se produce el encuentro.
Calculamos el espacio recorrido por uno de los dos coches
{e_{1} = 90 \cdot 12 = 1080 \, km.}