cual es la raíz cuadrada de 5 y 7​

Respuestas

Respuesta dada por: holasanticomothevato
1

Valor numérico

Los primeros sesenta dígitos significativos de su extensión decimal son:

   2.23606 79774 99789 69640 91736 68731 27623 54406 18359 61152 57242 7089 21345 6574 88995 90000.

(Secuencia n.º A002163 del OEIS).

El cual puede ser redondeado a 2.236 con una exactitud dentro del 99.99%. En abril de 1994, su valor numérico en decimal había sido computado (digitalizado) por lo menos a un millón de dígitos.2​

Como fracción continua

Se puede expresar como la fracción continua [2; 4, 4, 4, 4, 4…]. La sucesión de mejores aproximaciones racionales es:

   2 1 , 7 3 , 9 4 , 20 9 , 29 13 , 38 17 , 123 55 , 161 72 , 360 161 , 521 233 , 682 305 , 2207 987 , 2889 1292 , ⋯ {\displaystyle {\color {OliveGreen}{\frac {2}{1}}},{\frac {7}{3}},{\color {OliveGreen}{\frac {9}{4}}},{\frac {20}{9}},{\frac {29}{13}},{\color {OliveGreen}{\frac {38}{17}}},{\frac {123}{55}},{\color {OliveGreen}{\frac {161}{72}}},{\frac {360}{161}},{\frac {521}{233}},{\color {OliveGreen}{\frac {682}{305}}},{\frac {2207}{987}},{\color {OliveGreen}{\frac {2889}{1292}}},\cdots } {\displaystyle {\color {OliveGreen}{\frac {2}{1}}},{\frac {7}{3}},{\color {OliveGreen}{\frac {9}{4}}},{\frac {20}{9}},{\frac {29}{13}},{\color {OliveGreen}{\frac {38}{17}}},{\frac {123}{55}},{\color {OliveGreen}{\frac {161}{72}}},{\frac {360}{161}},{\frac {521}{233}},{\color {OliveGreen}{\frac {682}{305}}},{\frac {2207}{987}},{\color {OliveGreen}{\frac {2889}{1292}}},\cdots }

Las convergentes de la fracción continua están coloreadas; sus numeradores tienen la secuencia n.º A001077 del OEIS y sus denominadores tienen la secuencia n.º A001076 del OEIS. Los otros términos no coloreados son semiconvergentes.

Método babilónico

Cuando se calcula 5 {\displaystyle {\sqrt {5}}} {\sqrt {5}} por el método babilónico, comenzando con r0 = 2 y usando rn+1 = (rn + 5/rn) / 2, el n-ésimo aproximante rn es igual a la 2n-ésima convergente de la sucesión convergente:

   2 1 = 2.0 , 9 4 = 2.25 , 161 72 = 2.23611 … , 51841 23184 = 2.2360679779 … {\displaystyle {\frac {2}{1}}=2.0,\quad {\frac {9}{4}}=2.25,\quad {\frac {161}{72}}=2.23611\dots ,\quad {\frac {51841}{23184}}=2.2360679779\ldots } {\displaystyle {\frac {2}{1}}=2.0,\quad {\frac {9}{4}}=2.25,\quad {\frac {161}{72}}=2.23611\dots ,\quad {\frac {51841}{23184}}=2.2360679779\ldots }

Relación del número áureo y la sucesión de Fibonacci

La diagonal √5/2 de un medio cuadrado (el que tienen como medida sus lados 1 y 0.5) forman la base para la construcción geométrica del rectángulo áureo.

El número áureo φ es la media aritmética de 1 y la raíz cuadrada de 5.3​ La relación algebraica entre la raíz cuadrada de 5, el número áureo y el número áureo conjugado (Φ = 1/φ = φ − 1) son expresados en las fórmulas siguientes:

   5 = φ + Φ = 2 φ − 1 = 2 Φ + 1 {\displaystyle {\sqrt {5}}=\varphi +\Phi =2\varphi -1=2\Phi +1} {\displaystyle {\sqrt {5}}=\varphi +\Phi =2\varphi -1=2\Phi +1}

   φ = 1 + 5 2 {\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}} {\displaystyle \varphi ={\frac {1+{\sqrt {5}}}{2}}}

   Φ = 5 − 1 2 {\displaystyle \Phi ={\frac {{\sqrt {5}}-1}{2}}} {\displaystyle \Phi ={\frac {{\sqrt {5}}-1}{2}}}

(Véase la sección abajo para su interpretación geométrica como descomposiciones de un rectángulo raíz-5.)

La raíz cuadrada de 5 entonces calcula naturalmente en la expresión cerrada para los sucesión de Fibonacci, una fórmula de la forma que se escriba generalmente en términos del número áureo:

   F ( n ) = φ n − ( 1 − φ ) n 5 . {\displaystyle F\left(n\right)={{\varphi ^{n}-(1-\varphi )^{n}} \over {\sqrt {5}}}\,.}


Anónimo: que se supone que es esto
Preguntas similares