Un balón de fútbol tiene una masa de 400 gr y una velocidad de 15 m/s, después de 12 segundos se detiene. ¿Qué distancia necesitó para detenerse?, Cuál fue la desaceleración producida por el suelo?, ¿Qué fuerza de fricción lo detuvo?, ¿Qué cantidad de energía se disipó en el ambiente?
Respuestas
El balón necesitó 90 metros para detenerse. La desaceleración producida por el suelo fue de 1.25 m/s². La magnitud de la fuerza de fricción que detuvo al balón es de 0.5 N. Se disipó en el ambiente 45 J de energía.
Comenzamos extrayendo los datos:
- Velocidad inicial v₀ = 15 m/s
- Velocidad final v = 0 m/s (el balón se detiene)
- Tiempo en el que se detiene t= 12 s
- Masa del balón m= 400 g = 0.4 kg
¿Qué distancia necesitó para detenerse?
Primero calculemos la desaceleración del balón:
Usemos la ecuación de MRUA de distancia:
R/ El balón necesitó 90 metros para detenerse
¿Cuál fue la desaceleración producida por el suelo?
R/ Como se calculó en el inciso anterior, la desaceleración producida por el suelo fue de 1.25 m/s².
¿Qué fuerza de fricción lo detuvo?
Sabiendo la masa del balón, y su desaceleración, calculemos la fuerza de fricción usando la segunda ley de Newton:
fr = m×a
fr = 0.4 kg × (-1.25 m/s²)
fr = -0.5 N
R/ La magnitud de la fuerza de fricción que detuvo al balón es de 0.5 N
¿Qué cantidad de energía se disipó en el ambiente?
La energía disipada podemos calcularlas de dos formas:
1- Sabemos que toda la energía cinética inicial que tenía el balón fue disipada, por tanto, la energía cinética inicial debe ser la energía disipada. Esto es:
Ec = ½mv² = ½(0.4 kg)(15 m/s²)² = 45 J
2. Otra vía para calcular la energía se disipó en el ambiente es calculando el trabajo de la fuerza de rozamiento. Esto es:
T = F×d = 0.5*90 = 45 J
R/ Se disipó en el ambiente 45 J de energía.
VER MÁS EN https://brainly.lat/tarea/4678688