Calcula el área, y el volumen de un cilindro cuyo diámetro mide 24 cm y su altura 50cm

Respuestas

Respuesta dada por: Anónimo
6

Respuesta:

4672.32 cm^{2}       ;         22608 cm^{3}

Explicación paso a paso:

Diámetro:  d = 24 cm

Altura:  h = 50 cm

Area total: At = ?

At=  \pi  d h + \frac{\pi d^{2} }{2}  = \pi ( 24cm ) ( 50cm )  + \frac{\pi( 24cm )^{2}  }{2} = 1200\pi cm^{2} + \frac{576\picm^{2}  }{2}

At = 1200\pi cm^{2} + 288\pi cm^{2}

At = 1488\pi cm^{2}  =  1488 ( 3.14 ) cm^{2} =  4672.32 cm^{2}

At = 4672.32 cm^{2}

Volumen:

V = \frac{\pi d^{2}h }{4} = \frac{\pi (24cm )^{2} ( 50cm )}{4} = \frac{\pi( 576cm^{2}) (50cm )  }{4} = \frac{28800\pi cm^{3} }{4}

V = 7200\pi cm^{3 } =  7200 ( 3.14 ) cm^{3}

V = 22608 cm^{3}

Respuesta dada por: adrianahoyos2006
0

Explicación paso a paso:

Diámetro: d = 24 cm

Altura: h = 50 cm

Area total: At = ?

At= \pi d h + \frac{\pi d^{2} }{2} = \pi ( 24cm ) ( 50cm ) + \frac{\pi( 24cm )^{2} }{2} = 1200\pi cm^{2} + \frac{576\picm^{2} }{2}πdh+

2

πd

2

=π(24cm)(50cm)+

2

π(24cm)

2

=1200πcm

2

+

2

576\picm

2

At = 1200\pi cm^{2} + 288\pi cm^{2}At=1200πcm

2

+288πcm

2

At = 1488\pi cm^{2} = 1488 ( 3.14 ) cm^{2} = 4672.32 cm^{2}At=1488πcm

2

=1488(3.14)cm

2

=4672.32cm

2

At = 4672.32 cm^{2}At=4672.32cm

2

Volumen:

V = \frac{\pi d^{2}h }{4} = \frac{\pi (24cm )^{2} ( 50cm )}{4} = \frac{\pi( 576cm^{2}) (50cm ) }{4} = \frac{28800\pi cm^{3} }{4}V=

4

πd

2

h

=

4

π(24cm)

2

(50cm)

=

4

π(576cm

2

)(50cm)

=

4

28800πcm

3

V = 7200\pi cm^{3 } = 7200 ( 3.14 ) cm^{3}V=7200πcm

3

=7200(3.14)cm

3

V = 22608 cm^{3}V=22608cm

3

Preguntas similares