Respuestas
Respuesta:
eso depende de como le pegues a la bola
Explicación:
Respuesta:
Cuando dos bolas de billar chocan, las direcciones de sus velocidades justamente después del choque forman 90º. Sin embargo, deja de cumplirse la condición de que las bolas de billar ruedan sin deslizar, y como consecuencia de ello, la velocidad de su c.m. e incluso sus direcciones cambian durante un cierto tiempo, hasta que se restablece la condición de rodar sin deslizar. Las direcciones finales de las velocidades de las dos bolas dejan de formar 90º.
Una bola de billar rueda sin deslizar sobre el tapete con velocidad u1 y choca con una bola de billar idéntica en reposo. Vamos a determinar:
Las velocidades y direcciones de las bolas de billar inmediatamente después del choque
El movimiento posterior de las dos bolas de billar mientras deslizan sobre el tapete
Las velocidades finales constantes de las dos bolas de billar y sus direcciones cuando ruedan sin deslizar.
Choque bidimensional
Supondremos que las dos bolas de billar tienen la misma masa m y el mismo radio R, que el choque es perfectamente elástico, e=1. Despreciamos el efecto del rozamiento entre las superficies de las dos bolas en el breve intervalo de tiempo en el que están en contacto en el momento del choque. Las velocidades de los centros de masa de las dos bolas inmediatamente después del choque y sus direcciones están dadas por las expresiones.
V1=u1·sinθ
V 2=u1·cosθ
b=2R·sinθ
b se denomina parámetro de impacto
En la figura se muestra, las velocidades del c.m. de las esferas y la velocidad angular de rotación, antes del choque y después del choque. La bola incidente rueda sin deslizar, la velocidad de su c.m. u1 y la velocidad angular de rotación ω1 forman 90º, la relación entre sus módulos es ω1=u1/R.
Después del choque, la velocidad angular de rotación no cambia, pero cambia la velocidad de su c.m. tanto en módulo como en dirección, los vectores V1 y ω1 no forman 90º y la relación entre sus módulos ω1≠V1/R.
Consideremos la bola que estaba inicialmente en reposo, su c.m. adquiere después del choque, una velocidad V2 formando un ángulo θ con el eje X , pero no tiene velocidad angular inicial de rotación, tampoco se cumple la condición de rodar sin deslizar ya que ω2≠V2/R.
Explicación: