Respuestas
números, letras y signos se llama Álgebra.
El lenguaje algebraico es más preciso que el lenguaje numérico: podemos expresar enunciados de una forma más breve. :
7x4 = x4 + x4 + x4 + x4 + x4 + x4 + x4
– 3x2 = – x2 – x2 – x2
Exponente numérico: es la cantidad que se encuentra arriba a la derecha de la base, la cual indica la cantidad de veces que la base se toma como producto.
Ejemplos:
5x3 = 5 (x) (x) (x)
8( – x + 5)2 = 8(– x + 5) (– x + 5)
.
A modo de ejemplos, ofrezco un listado de frases con un contenido matemático traducidas a una expresión algebraica:
Frase Expresión algebraica
La suma de 2 y un número 2 + d (la "d" representa la cantidad desconocida)
3 más que un número x + 3
La diferencia entre un número y 5 a - 5
4 menos que n 4 - n
Un número aumentado en 1 k + 1
Un número disminuido en 10 z - 10
El producto de dos números a • b
Dos veces la suma de dos números 2 ( a + b)
Dos veces un número sumado a otro 2a + b
Cinco veces un número 5x
Ene veces (desconocida) un número conocido n multiplicado por el número conocido
El cociente de dos números a
b
La suma de dos números x + y
10 más que n n + 10
Un número aumentado en 3 a + 3
Un número disminuido en 2 a – 2
El producto de p y q p • q
Uno restado a un número n – 1
El antecesor de un número cualquiera x – 1
El sucesor de un número cualquiera x + 1
3 veces la diferencia de dos números 3(a – b)
10 más que 3 veces un número 10 + 3b
La diferencia de dos números a – b
La suma de 24 y 19 24 + 19 = 43
19 más que 33 33 + 19 = 52
Dos veces la diferencia de 9 y 4 2(9 – 4) = 18 – 8 = 10
El producto de 6 y 16 6 • 16 = 96
3 veces la diferencia de 27 y 21 3(27 – 21) = 81 – 63 = 18
La diferencia de 9 al cuadrado y 4 al cuadrado 92 – 42 = 81 – 16 = 65
El cociente de 3 al cubo y 9 33 / 9 = 27 / 9 = 3
12 al cuadrado dividido por el producto de 8 y 12 122 ÷ (8 • 12) = 144 ÷ 96 = 1,5
El lenguaje algebraico consta de términos como: 3xy²
Lenguaje algebraico: 2x + 5y, 3/z,
Lenguaje natural: el doble de un número más el quintuple de otro, la tercera parte de un número.
Saludos.