Respuestas
Respuesta:
De igual modo f(2) = 4, f(4) = 16, f(a) = a 2 , etc. Veamos algunos ejemplos que constituyen funciones matemáticas.
...
Funciones Matemáticas: Conceptos Básicos.
Conjunto X Conjunto Y Desarrollo
1 5 f(1) = 2(1) + 3 = 2 + 3 = 5
2 7 f(2) = 2(2) + 3 = 4 + 3 = 7
3 9 f(3) = 2(3) + 3 = 6 + 3 = 9
Respuesta:
En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio ) y otro conjunto de elementos Y (llamado codominio ) de forma que a cada elemento x del dominio le corresponde un único elemento f(x) del codominio (los que forman el recorrido, también llamado rango o ámbito ).
Ver: Relaciones y funciones
En lenguaje cotidiano o más simple, diremos que las funciones matemáticas equivalen al proceso lógico común que se expresa como “depende de”.
Las funciones matemáticas pueden referirse a situaciones cotidianas, tales como: el costo de una llamada telefónica que depende de su duración, o el costo de enviar una encomienda que depende de su peso.
A modo de ejemplo, ¿cuál sería la regla que relaciona los números de la derecha con los de la izquierda en la siguiente lista?:
1 --------> 1
2 --------> 4
3 --------> 9
4 --------> 16
Los números de la derecha son los cuadrados de los de la izquierda.
La regla es entonces "elevar al cuadrado":
1 --------> 1
2 --------> 4
3 --------> 9
4 --------> 16
x --------> x 2 .
Para referirse a esta regla podemos usar un nombre, que por lo general es la letra f (de función). Entonces, f es la regla "elevar al cuadrado el número".
Usualmente se emplean dos notaciones:
x --------> x 2 o f(x) = x 2 .
Así, f(3) significa aplicar la regla f a 3. Al hacerlo resulta 3 2 = 9.
Entonces f(3) = 9. De igual modo f(2) = 4, f(4) = 16, f(a) = a 2 , etc.
ex pero que te sirva xd