encontrar la ecuación de la recta que pasa por los puntos (2,4) y (5,1)

Respuestas

Respuesta dada por: sowiii
4

Respuesta:Sustituimos los valores en la forma continua:

\displaystyle \frac{x-1}{2-1}=\frac{y-3}{-5-3} \ \ \ \ \ \ \ \ \ \ -8x+8=y-3

Entonces, la ecuación de la recta es:

8x+y-11=0

Conociendo la ecuación de la recta, hallar 2 puntos en ella

Cuando conocemos la ecuación de una recta es muy sencillo encontrar puntos que pertenecen a ella, recordemos que la ecuación de la recta puede escribirse de distintas formas: general, paramétrica, o punto-pendiente por ejemplo.

Para encontrar puntos en la recta, lo mas recomendable es usar la forma punto-pendiente y hacer una tabulación (tabla de valores) donde encontramos muchas coordenadas (puntos) que pertenecen a la recta

Ejemplo:

Sea la ecuación general de la recta :  \displaystyle 8x+y-11=0

Podemos escribirla en su forma punto-pendiente (despejando y) : \displaystyle y=-8x+11

Ahora podemos asignar cualquier valor a x, y obtener el valor correspondiente a y como se muestra en la tabla a continuación:

Mostrar

registros

Buscar:

Valores que asignamos a x Ecuación punto- pendiente Valor obtenido para y Coordenada (punto) que pertenece a la recta

x y=-8x+11 y (x,y)

2 y=-8(2)+11

y=-16+11

y=-5 -5 (2,-5)

0 y=-8(0)+11

y=0+11

y=11 11 (0,11)

-3 y=-8(-3)+11

y=24+11

y=35 35 (-3,35)

Mostrando desde 1 hasta 4 de 4 registros

AnteriorSiguiente

Otra forma sencilla de obtener 2 puntos de la recta de forma rápida, es recordando lo que significa cada elemento de la ecuación punto-pendiente:

\displaystyley=mx + b

Donde m representa la pendiente de la recta y b  representa la coordenada del punto donde la recta atraviesa el eje y , es decir, saber esto nos dirá rápidamente que un punto en la recta es la coordenada es (0,b) .

Ahora, suponemos que en nuestra ecuación la variable y=0 y, entonces tenemos A0=mx+b. Despejamos  x:

\displaystyle x= - \frac{b}{m}

Este valor es conocido como a  y es el valor donde la recta atraviesa el eje x  , saber esto nos dirá rápidamente que un punto en la recta es la coordenada es (a,0)

De tal forma, en nuestra ecuación que usamos de ejemplo, obtendríamos los puntos \displaystyle ( 0 , 11 ) y  \displaystyle \left( \frac{11}{8} ,0 \right)

¿Necesitas un/a profe de Matemáticas?

Explicación paso a paso:

Preguntas similares