Encuentra él producto .

Adjuntos:

Respuestas

Respuesta dada por: angiemontenegr
1
Aplicas productos notables.
(a + b)(a - b) = a² - b²
(x - 2)(x + 2) =
x² - 2² =
x² - 4


Aplicas
(a - b)² = a² - 2ab + b²
(x - 1)(x - 1) =
(x - 1)² =
x² - 2(x)(1) + 1² =
x² - 2x + 1


Aplicas.
(a+ b) = a² + 2ab + b²
(x + 3)(x + 3) =
(x + 3)² =
x² + 2(x)(3) + 3² =
x² + 6x + 9


(x - 6)(x + 6) =
x² - 6² =
x² - 36

(2x - 1)(2x - 1) =
(2x - 1)² =
(2x)² - 2(2x)(1) + 1² =
4x² - 4x + 1

(a² - 1)(a² + 1) =
(a²)² - 1² =
a⁴ - 1

Aplicas
(x + a)(x - b) =
x² + (a- b)x + (a)(-b)

(x + 3)(x - 2) =
x² + (3 - 2)x + (3)(-2) =
x² + x - 6







Respuesta dada por: steevensito
1
Aplicas productos notables.
(a + b)(a - b) = a² - b²
(x - 2)(x + 2) =
x² - 2² =
x² - 4


Aplicas
(a - b)² = a² - 2ab + b²
(x - 1)(x - 1) =
(x - 1)² =
x² - 2(x)(1) + 1² =
x² - 2x + 1


Aplicas.
(a+ b) = a² + 2ab + b²
(x + 3)(x + 3) =
(x + 3)² =
x² + 2(x)(3) + 3² =
x² + 6x + 9


(x - 6)(x + 6) =
x² - 6² =
x² - 36

(2x - 1)(2x - 1) =
(2x - 1)² =
(2x)² - 2(2x)(1) + 1² =
4x² - 4x + 1

(a² - 1)(a² + 1) =
(a²)² - 1² =
a⁴ - 1

Aplicas
(x + a)(x - b) =
x² + (a- b)x + (a)(-b)

(x + 3)(x - 2) =
x² + (3 - 2)x + (3)(-2) =
x² + x - 6



Preguntas similares