radicación de números racionales y sus propiedades​


salomevergel: ayuda

Respuestas

Respuesta dada por: kevinpenagos0929
5

La radicación es en realidad otra forma de expresar una potenciación: la raíz de cierto orden de un número es equivalente a elevar dicho número a la potencia inversa. Por esto, las propiedades de la potenciación se cumplen también con la radicación. Para que estas propiedades se cumplan, se exige que el radicando de las raíces sea positivo.

Raíz de un producto

La raíz de un producto es igual al producto de las raíces de los factores: \sqrt[n]{{a} \cdot {b}} = \sqrt[n]{a} \cdot \sqrt[n]{b}

Ejemplo

\sqrt{3^2 \cdot 2^4} = \sqrt{3^2} \cdot \sqrt{2^4} = \sqrt{9} \cdot \sqrt{16} = 3\cdot 4 = 12.

Se llega a igual resultado de la siguiente manera:

\sqrt{3^2 \cdot 2^4} = \sqrt{9 \cdot 16} = \sqrt{144} = 12.

Raíz de un cociente

La raíz de una fracción es igual al cociente de la raíz del numerador entre la raíz del denominador:

Ejemplo

Raíz de una raíz

Para calcular la raíz de una raíz se multiplican los índices de las raíces y se conserva el radicando:

Ejemplo

\sqrt[9]{\sqrt[3]{5}} = \sqrt[27]{5}.

Respuesta dada por: melaniafaccioli
1

Respuesta:

Propiedades de la radicación. La radicación es en realidad otra forma de expresar una potenciación: la raíz de cierto orden de un número es equivalente a elevar dicho número a la potencia inversa. Por esto, las propiedades de la potenciación se cumplen también con la radicación.

Explicación paso a paso:

Preguntas similares