Sí el punto P(x,y) está a una distancia 4 veces mayor a P1(-5,-3) que a P2 (6,10) y queda entre P1 y p2 encuentra las coordenadas de P
Respuestas
Respuesta dada por:
62
Veamos.
Se debe cumplir que: P1P / PP2 = 4; si sumamos 1 en ambos miembros nos queda:
(P1P + PP2) / PP2 = 5, o bien P1P2 / PP2 = 5; o sea: PP2 = 1/5 P1P2
O también P1P = 4/5 P1P2
El mejor método es usar el álgebra de vectores.
OP = OP1 + P1P = OP1 + 4/5 P1P2
P1P2 = OP2 - OP1 = (6, 10) - (- 5, - 3) = (11, 13)
OP = (- 5, - 3) + 4/5 (11, 13) = (19/5, 37/5)
Adjunto gráfico con los tres puntos.
Saludos Herminio
Se debe cumplir que: P1P / PP2 = 4; si sumamos 1 en ambos miembros nos queda:
(P1P + PP2) / PP2 = 5, o bien P1P2 / PP2 = 5; o sea: PP2 = 1/5 P1P2
O también P1P = 4/5 P1P2
El mejor método es usar el álgebra de vectores.
OP = OP1 + P1P = OP1 + 4/5 P1P2
P1P2 = OP2 - OP1 = (6, 10) - (- 5, - 3) = (11, 13)
OP = (- 5, - 3) + 4/5 (11, 13) = (19/5, 37/5)
Adjunto gráfico con los tres puntos.
Saludos Herminio
Adjuntos:
Respuesta dada por:
0
Explicación paso a paso:
gracias por las respuestas ☺️
Preguntas similares
hace 7 años
hace 9 años
hace 9 años
hace 9 años
hace 9 años