si en la primera casilla de un tablero de ajedrez se coloca una moneda de $2 en el segundo una moneda de $5 y en la tercera una de $8 y asi sucesivamente hasta cubrir los 64 cuadrados ¿Cuanto dinero habrá sobre el tablero?
Respuestas
Respuesta:
trescientos catorse $ 314
Respuesta:
Habría $ 6176
Explicación paso a paso:
1) Como el tablero tiene 64 cuadrados, tendremos una sucesión de 64 números.
Cada moneda vale $3 más que la anterior, podríamos decir que:
la primera moneda vale 2 + ( 3 x 0 )= 2
la segunda moneda vale 2 + ( 3 x 1 )= 5
la tercera moneda vale 2 + ( 3 x 2 )= 8
.......
Así la casilla 64 tendrá una moneda que vale 2 + ( 3 x 63 )= 191
2) Lo último que nos queda es sumar todos los valores.
Esto puede sonar complicado, pero es muy fácil:
Notemos el siguiente ejemplo 5x4 + 5x2 = 20 + 10 = 30 = 5x6
En este ejemplo podemos sumar ese 2+4 ----------> 5x(2+4)=5x6=30
Ahora esto lo aplicaremos al problema:
2 + ( 3 x 0 )= 2 +
2 + ( 3 x 1 )= 5
2 + ( 3 x 2 )= 8
......
2 + ( 3 x 63 )= 191
Tendremos ese 2 en los 64 cuadrados, osea 2 x 64
Luego viene la parte dificil, que es sumar los multiplos de 3
Como vimos en el ejemplo del 5x4 + 5x2 = 5x6
También podemos representar la suma de los múltiplos del 3 como:
3 x ( 0 + 1 + 2.....62 + 63 )
sumar estos números, se hace con la fórmula n x (n+1) / 2
donde n=63, 63 x 64 /2= 2016
Luego sumamos: 2 x 64 + 3 x 2016
128 + 3 x 2016
128 + 6048
6176
Esta sería la respuesta :)
pd: Lamento haber echo la explicación tan larga, espero que te halla ayudado :3