Numero divisible por 3 y entre 5,con cero en la posicion de las decenas y cuyos digitos de las centenas y las unidades son numeros primos
Respuestas
Respuesta:
? 0 ?=105 es divisible entre el 3 y el 5 y el 1 y el 5 son numeros primos
Explicación paso a paso:
Divisibilidad y números indivisiblemente muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos dividido entre el número de grupos sería una división entera con resto o sin resto. Caso de que al dividir un número entero n entre otro número entero d, la división sea exacta sin resto, diremos que n es múltiplo de d, que n es divisible entre d, que d es divisor de n, o que d divide a n. En este caso, existe un tercer entero (cociente) c, tal que n=c×d. En general, aplicamos la divisibilidad a números enteros, pudiendo ser positivos o negativos. Por ejemplo, 45 es divisible entre 15, y −33 divide a 198, siendo los cocientes respectivos 3 y −6. La divisibilidad tiene las siguientes propiedades: • Reflexiva: para todo entero n, n divide a n (con cociente 1). • Transitiva: si a divide a b, y b divide a c, entonces a divide a c. • Valor absoluto: a divide a b si y sólo si |a| divide a |b|. • Si a divide a b, entonces |a|≤|b|. • Si a divide a b y b divide a a, entonces a=b o a=−b (en cualquier caso |a|=|b|). Los enteros positivos p tales que sólo son divisibles por 1, −1, p y −p se llaman números primos, y son especialmente interesantes como veremos más adelante. Los números primos en orden creciente son 2, 3, 5, 7, 11, 13, 17,... (el 1 es un caso especial que no se suele considerar primo). Algunas reglas sencillas sobre divisibilidad El que un número sea divisible entre 2, 3, 4, 5, 8, 9, 10 u 11 es relativamente sencillo de comprobar. Un número entero cualquiera n: • es divisible entre 2 si y sólo si su última cifra es par, • es divisible entre 3 si y sólo si la suma de las cifras de n es múltiplo de 3, • es divisible entre 4 si y sólo si su última cifra es par pero no múltiplo de 4, y su penúltima cifra es impar, o si su última cifra es múltiplo de 4 y su penúltima cifra es par (o equivalentemente, si el número formado por sus dos últimas cifras es divisible entre 4), • es divisible entre 5 si y sólo si su última cifra es 0 o 5, • es divisible entre 8 si y sólo si sus el número formado por sus tres últimas cifras es múltiplo de 8, • es divisible entre 9 si y sólo si la suma de las cifras de n es múltiplo de 9, • es divisible entre 10 si y sólo si su última cifra es 0, • es divisible entre 11 si y sólo si la suma de sus cifras en posición par, menos la suma de sus cifras en posición impar, es múltiplo de 11 (incluido el 0). Ilustramos el último caso con un ejemplo: el número 164151324116 no es múltiplo de 11, porque sumando las cifras de posición impar (1+4+5+3+4+1=18), y las cifras de posición impar (6+1+1+2+1+6=17), la diferencia es 1, que no es múltiplo de 11. Sin embargo, el número 164151324161 sí sería múltiplo de 11 (1+4+5+3+4+6=23, 6+1+1+2+1+1=12, y 23−12=11, que sí es múltiplo de 11). Cuando las reglas anteriores no valen Si nos toca dividir un entero entre uno de los números anteriores, no es complicado ver a priori si la división tendrá resto 0 o no, pero nos puede tocar dividir entre un número “sin regla simple”, como 7, 13, 47, o 2010. ¿Qué hacemos en un caso como éste? En el caso de los números 7, 13 o 47, poco podemos