Si, un número racional es todo cociente a/b, siento a y b enteros con b ≠ 0 y máximo
común divisor de numerador y denominador igual a 1 mcd(a,b) = 1.
El conjunto que está formado por expresiones de este tipo se conoce como Conjunto
de números Racionales y se representa con la letra Q
La fracción que representa a un racional es:
Respuestas
Los números racionales son todos los números que pueden representarse como el cociente de dos números enteros o, más exactamente, un entero y un natural positivo;1 es decir, una fracción común {\displaystyle a/b}a/b con numerador {\displaystyle a}a y denominador {\displaystyle b}b distinto de cero. El término «racional» alude a una fracción o parte de un todo. El conjunto de los números racionales se denota por Q (o bien {\displaystyle \mathbb {Q} }\mathbb{Q}, en negrita de pizarra) que deriva de «cociente» (Quotient en varios idiomas europeos). Este conjunto de números incluye a los números enteros ({\displaystyle \mathbb {Z} }\mathbb{Z}) y a los números fraccionarios (que es el cociente de dos números naturales, obviando la división por cero, actualmente sin definir), y es un subconjunto de los números reales ({\displaystyle \mathbb {R} }\mathbb{R}).
La escritura decimal de un número racional es, o bien un número decimal finito, o bien semiperiódico. Esto es cierto no solo para números escritos en base 10 (sistema decimal); también lo es en base binaria, hexadecimal o cualquier otra base entera. Recíprocamente, todo número que admite una expansión finita o periódica (en cualquier base entera) es un número racional.
Un número real que no es racional se llama número irracional; la expresión decimal de los números irracionales, a diferencia de los racionales, es infinita aperiódica.2
En sentido estricto, número racional es el conjunto de todas las fracciones equivalentes a una dada; de todas ellas, se toma como representante canónico de dicho número racional a la fracción irreducible. Las fracciones equivalentes entre sí –número racional– son una clase de equivalencia, resultado de la aplicación de una relación de equivalencia sobre {\displaystyle \mathbb {Z} }\mathbb{Z}.