Respuestas
Factoriza {x}^{2}-7x+10x
2
−7x+10.
(x-5)(x-2)\le 0(x−5)(x−2)≤0
2 Despeja en función de xx.
x=5,2x=5,2
3 A partir de los valores de xx, tenemos estos 3 intervalos para probar.
\begin{aligned}&x\le 2\\&2\le x\le 5\\&x\ge 5\end{aligned}
x≤2
2≤x≤5
x≥5
4 Elige un punto de prueba para cada intervalo.
For the interval x\le 2x≤2:
Let's pick x=0x=0. Then, {0}^{2}-7\times 0+10\le 00
2
−7×0+10≤0.
After simplifying, we get 10\le 010≤0, which is false.
Descarta este intervalo..
For the interval 2\le x\le 52≤x≤5:
Let's pick x=3x=3. Then, {3}^{2}-7\times 3+10\le 03
2
−7×3+10≤0.
After simplifying, we get -2\le 0−2≤0, which is true.
Mantén este intervalo..
For the interval x\ge 5x≥5:
Let's pick x=6x=6. Then, {6}^{2}-7\times 6+10\le 06
2
−7×6+10≤0.
After simplifying, we get 4\le 04≤0, which is false.
Descarta este intervalo..
5 Por lo tanto,
2\le x\le 52≤x≤5