L=(x+2)(x2-2x+4)-(x-2)(x2+2x+4)

Respuestas

Respuesta dada por: CesarAC
3

Respuesta:

L=16

Explicación paso a paso:

L=(x+2)(x^{2}-2x+4)-(x-2)(x^{2}+2x+4)

L=[(x)(x^{2})+(x)(-2x)+(x)(4)+(2)(x^{2})+(2)(-2x)+(2)(4)]-[(x)(x^{2})+(x)(2x)+(x)(4)+(-2)(x^{2})+(-2)(2x)+(-2)(4)]

L=[x^{3}-2x^{2}+4x+2x^{2}-4x+8]-[x^{3}+2x^{2}+4x-2x^{2}-4x-8]

L=x^{3}-2x^{2}+4x+2x^{2}-4x+8-x^{3}-2x^{2}-4x+2x^{2}+4x+8

L=(1-1)x^{3}+(-2+2-2+2)x^{2}+(4-4-4+4)x+(8+8)

L=0x^{3}+0x^{2}+0x+16

L=16

Preguntas similares